Abstract:
Sensors for determining the presence and concentration of bio-molecules in a biological sample are provided in the form of polymer brushes, which comprise a substrate having a surface that is modified with a water-dispersible or water-soluble polymer segment having functional groups that bind probes. The method of synthesis of such sensors preferably includes use of controlled free radical polymerization techniques, and in particular the use of an iniferter initiator, which allows for controlled architecture polymers to modify the surface of the substrate. In this manner functional groups in the polymer chain are removed from the surface, which allows for solution chemistry to be more realistically reproduced with the benefits of a solid bound probe.
Abstract:
Nitroxides having an alpha-carbon atom with a destabilizing moiety are effective control agents for emulsion and water-based polymerizations, including the formation of block copolymers from a wide range of monomers. The nitroxide radicals may be used as a free radical or as an adduct with a residue from the initiator. The emulsions have living characteristics, including the re-initiation of polymer chains. Also, a seeded process for emulsions, which includes the step-wise addition of monomer is disclosed, providing access to a wide range of initiator types.
Abstract:
Sensors for determining the presence and concentration of bio-molecules in a biological sample are provided in the form of polymer brushes, which compris e a substrate having a surface that is modified with a water-dispersible or water-soluble polymer segment having functional groups that bind probes. The method of synthesis of such sensors preferably includes use of controlled fr ee radical polymerization techniques which allows for controlled architecture polymers to modify the surface of the substrate. In this manner functional groups in the polymer chain are removed from the surface, which allows for solution chemistry to be more realistically reproduced with the benefits of a solid bound probe.
Abstract:
Sensors for determining the presence and concentration of bio-molecules in a biological sample are provided in the form of polymer brushes, which comprise a substrate having a surface that is modified with a water-dispersible or water-soluble polymer segment having functional groups that bind probes. The method of synthesis of such sensors preferably includes use of controlled free radical polymerization techniques, and in particular the use of an iniferter initiator, which allows for controlled architecture polymers to modify the surface of the substrate. In this manner functional groups in the polymer chain are removed from the surface, which allows for solution chemistry to be more realistically reproduced with the benefits of a solid bound probe.
Abstract:
Sensors for determining the presence and concentration of bio-molecules in a biological sample are provided in the form of polymer brushes, which comprise a substrate having a surface that is modified with a water-dispersible or water-soluble polymer segment having functional groups that bind probes. The method of synthesis of such sensors preferably includes use of controlled free radical polymerization techniques, and in particular the use of an iniferter initiator, which allows for controlled architecture polymers to modify the surface of the substrate. In this manner functional groups in the polymer chain are removed from the surface, which allows for solution chemistry to be more realistically reproduced with the benefits of a solid bound probe.
Abstract:
Sensors for determining the presence and concentration of bio-molecules in a biological sample are provided in the form of polymer brushes, which comprise a substrate having a surface that is modified with a water-dispersible or water-soluble polymer segment having functional groups that bind probes. The method of synthesis of such sensors preferably includes use of controlled free radical polymerization techniques, and in particular the use of an iniferter initiator, which allows for controlled architecture polymers to modify the surface of the substrate. In this manner functional groups in the polymer chain are removed from the surface, which allows for solution chemistry to be more realistically reproduced with the benefits of a solid bound probe.
Abstract:
Sensors for determining the presence and concentration of bio-molecules in a biological sample are provided in the form of polymer brushes, which comprise a substrate having a surface that is modified with a water-dispersible or water-soluble polymer segment having functional groups that bind probes. The method of synthesis of such sensors preferably includes use of controlled free radical polymerization techniques which allows for controlled architecture polymers to modify the surface of the substrate. In this manner functional groups in the polymer chain are removed from the surface, which allows for solution chemistry to be more realistically reproduced with the benefits of a solid bound probe.
Abstract:
Nitroxides having an alpha-carbon atom with a destabilizing moiety are effective control agents for emulsion and water-based polymerizations, including the formation of block copolymers from a wide range of monomers. The nitroxide radicals may be used as a free radical or as an adduct with a residue from the initiator. The emulsions have living characteristics, including the re-initiation of polymer chains. Also, a seeded process for emulsions, which includes the step-wise addition of monomer is disclosed, providing access to a wide range of initiator types.