Abstract:
A method for integrating III-V semiconductor materials onto a rigid host substrate deposits a thin layer of reactive metal film on the rigid host substrate. The layer can also include a separation layer of unreactive metal or dielectric, and can be patterned. The unreactive metal pattern can create self-aligned device contacts after bonding is completed. The III-V semiconductor material is brought into contact with the thin layer of reactive metal. Bonding is by a low temperature heat treatment under a compressive pressure. The reactive metal and the functional semiconductor material are selected to undergo solid state reaction and form a stable alloy under the low temperature heat treatment without degrading the III-V material. A semiconductor device of the invention includes a functional III-V layer bonded to a rigid substrate via an alloy of a component of the functional III-V layer and a metal that bonds to the rigid substrate.
Abstract:
Methods and devices that monolithically integrate thin film elements/devices, e.g., environmental sensors, batteries and biosensors, with high performance integrated circuits, i.e., integrated circuits formed in a high quality device layer. Preferred embodiments further monolithically integrate a solar cell array. Preferred embodiments provide pin-size and integrated solar powered wearable electronic, ionic, molecular, radiation, etc. sensors and circuits.
Abstract:
A preferred conformal penetrating multi electrode array includes a plastic substrate that is flexible enough to conform to cortical tissue. A plurality of penetrating semiconductor micro electrodes extend away from a surface of the flexible substrate and are stiff enough to penetrate cortical tissue. Electrode lines are encapsulated at least partially within the flexible substrate and electrically connected to the plurality of penetrating semiconductor microelectrodes. The penetrating semiconductor electrodes preferably include pointed metal tips. A preferred method of fabrication permits forming stiff penetrating electrodes on a substrate that is very flexible, and providing electrical connection to electrode lines within the substrate.
Abstract:
Devices and methods of the invention use a plurality of Fin structures and or combine a planar portion with Fin structures to compensate for the first derivative of transconductance, gm. In preferred methods and devices, Fins have a plurality of widths and are selected to lead to the separate turn-on voltage thresholds for the largest, intermediate and smallest widths of the MIS HEMT fins to flatten the transconductance gm curve over an operational range of gate source voltage.
Abstract:
A flexible electrode array with hundreds or thousands channels for clinical use includes an array of at least hundreds of electrodes on a flexible biocompatible polymer substrate. Perfusion through holes are provided through the substrate. Individual elongate leads connect to each of the electrodes, the elongate lead connections being supported by the flexible biocompatible polymer substrate and extending away from the array. Flexible biocompatible polymer insulates the individual elongate lead connections and supporting the array. An interposer with individual channel connections is conductively bonded to the individual elongate lead connections. Sterile bag packaging encloses a portion of the interposer, where the outer side of the package including the array and individual elongate lead is sterile while the inner side of the packaging is non-sterile. The portion interposer inside the package is configured to connect to a circuit board within the packaging.
Abstract:
A flexible thin film transistor tactile sensor includes a piezoelectric semiconductor thin film channel of material whose conductivity can be electrostatically controlled connected with source and drain metals and sandwiched between bottom and top thin film insulators and at least one of a bottom and top gate metal, the sensor being supported on a flexible substrate. The piezoelectric property of the used material transduces pressure to electronic charge. The semiconductor property of the used material permits electrostatic modulation of the conductivity in TFT device architecture such that the device can be switched on and off. Transistor action provides gain for input signals, i.e., a modulation of the gate voltage induces strong current change between the source and drain, which can be leveraged to amplify the response to input pressure. The transistor forms the basis for sensor arrays, which are readily scalable to large size.
Abstract:
A nanowire probe sensor array including a substrate with a metal pattern thereon. An array of semiconductor vertical nanowire probes extends away from the substrate, and at least some of probes, and preferably all, are individually electrically addressed through the metal pattern. The metal pattern is insulated with dielectric, and base and stem portions of the nanowires are also preferably insulated. A fabrication process patterns metal connections on a substrate. A semiconductor substrate is bonded to the metal pattern. The semiconductor substrate is etched to form the neural nanowire probes that are bonded to the metal pattern. Dielectric is then deposited to insulate the metal pattern.