Abstract:
There is described an excimer radiation lamp assembly. The lamp assembly comprise a radiation emitting region and at least one substantially radiation opaque region. The radiation emitting region comprises a pair of dielectric elements disposed in a substantially coaxial arrangement.
Abstract:
The invention relates to an ultraviolet radiation lamp. The lamp comprises a substantially sealed cavity comprising a mercury-containing material; a filament disposed in the sealed cavity; and an electrical control element in contact with the filament, the electrical control element configured to adjust or maintain a temperature of the mercury-containing material with respect to a prescribed temperature. Such a constructions allows the present ultraviolet radiation lamp to be operated at optimal efficiency without the need to use additional components to add heat to and/or remove heat from the mercury-containing material.
Abstract:
The present invention relates to an ultraviolet radiation lamp. The lamp comprises: (i) a substantially sealed cavity comprising a mercury-containing material; and (ii) a heating unit disposed exteriorly with respect to the cavity. The heating unit is disposed in contact with a first portion of the cavity comprising the mercury- containing material. The heating unit has adjustable heat output.
Abstract:
There is described a fluid treatment system which may which may be used with radiation sources that do not require a protective sleeve - e.g., excimer radiation sources. An advantage of the present fluid system treatment is that the radiation sources may be removed from the fluid treatment zone without necessarily having to shut down the fluid treatment system, remove the fluid, break the seals which retain fluid tightness, replace/service radiation source and than reverse the steps. Instead, the present fluid treatment system allows for service/replacement of the radiation sources in the fluid treatment zone during operation of the fluid treatment system.
Abstract:
A lamp device is disclosed.The lamp device comprises a first electrical connector and a second electrical connector located at a first end portion of the lamp device. The first end portion of the lamp device is received in a receptacle of a first base portion. A first locking portion is included for secunng the first base portion to the first end portion. The present radiation lamp device obviates or mitigates the need to use adhesive and/or polymer insulation/O-rings to achieve electrical connections. Further, the present radiation lamp may be oriented in a vertical orientation without the need to use springs and/or rubber part to support the distal end of the lamp.
Abstract:
There is described an excimer radiation lamp assembly. The lamp assembly comprises: an elongate member having an annular cross-section to define an elongate passageway aligned with a longitudinal axis of the lamp assembly; an electrode element in electrical connection with at least a portion of the elongate passageway; and a cooling element disposed in the elongate passageway, the cooling element being electrically isolated with respect to the electrode element.
Abstract:
There is disclosed an optical radiation sensor device. The device includes a radiation collector for receiving radiation from a predefined arc around the collector within the field and redirecting the received radiation along a predefined pathway; motive means to move the radiation collector from a first position in which a first portion of the predefined arc is received by the radiation collector and a second portion in which a second portion of the predefined arc is received by the radiation collector; and a sensor element capable of detecting and responding to incident radiation along the pathway when the radiation collector is in the first position and in the second. The use of the optical radiation sensor device in a radiation source module and in a fluid treatment system is also described.
Abstract:
There is disclosed an optical radiation sensor system. The system includes a sensor device (140) and a cleaning device (115). The sensor device detects and responds to radiation from a radiation field (170) and includes a surface (155) that is movable with respect to the radiation field between a first position in which the surface is in the radiation field and a second position in which at least a portion of the surface is out of the radiation field. The cleaning device operates to remove fouling materials from at least a portion of the surface in the second position. The cleaning device may be a chemical cleaning device, a mechanical cleaning device or a combined chemical/mechanical device.
Abstract:
There is described an excimer radiation lamp assembly. The lamp assembly comprises: an elongate member having an annular cross-section to define an elongate passageway aligned with a longitudinal axis of the lamp assembly; an electrode element in electrical connection with at least a portion of the elongate passageway; and a cooling element disposed in the elongate passageway, the cooling element being electrically isolated with respect to the electrode element.
Abstract:
A lamp device is disclosed. The lamp device comprises a first electrical connector and a second electrical connector located at a first end portion of the lamp device. The first end portion of the lamp device is received in a receptacle of a first base portion. A first locking portion is included for secunng the first base portion to the first end portion. The present radiation lamp device obviates or mitigates the need to use adhesive and/or polymer insulation/O-rings to achieve electrical connections. Further, the present radiation lamp may be oriented in a vertical orientation without the need to use springs and/or rubber part to support the distal end of the lamp.