Abstract:
A system (120) for reflecting or redirecting incident light, microwave or sound energy includes a first substrate (144) configured to support an array of reflective elements (130) that can be angularly displaced through a range of substantially (90) degrees in response to a reflector angle control signal and a controller programmed to generate the reflector angle control signal to achieve desired incident energy, beam or wavefront redirection. The reflective elements (130) preferably comprise MEMS micro-reflector elements hingedly or movably attached to the first substrate (130) and define a reflective surface that is aimed at the source of incident light, microwave or sound energy.
Abstract:
Methods, systems, and devices are disclosed for implementing molecular sensors. In one aspect, an ion-gas sensor device includes a pre-concentration module to collect and concentrate a gas-phase chemical for analysis; a piezoelectric fan to produce an air-flow through acoustic streaming to drive the gas-phase chemical released by the pre-concentration module to one or more downstream modules; an ionizer downstream from the piezoelectric fan to ionize the gas-phase chemical; and a gas sensor downstream from the piezoelectric fan and the ionizer to detect the ionized gas-phase chemical driven by the piezoelectric fan. The piezoelectric fan can include a stack of thin-film layers that includes a thin-film piezoelectric layer. The ion-gas sensor device is made into an ultra-portable package capable of integration with mobile communication devices, such as PDA devices or smart phones.
Abstract:
An exemplary thinned-down betavoltaic device includes an N+ doped silicon carbide (SiC) substrate having a thickness between about 3 to 50 microns, an electrically conductive layer disposed immediately adjacent the bottom surface of the SiC substrate; an N- doped SiC epitaxial layer disposed immediately adjacent the top surface of the SiC substrate, a P+ doped SiC epitaxial layer disposed immediately adjacent the top surface of the N- doped SiC epitaxial layer, an ohmic conductive layer disposed immediately adjacent the top surface of the P+ doped SiC epitaxial layer, and a radioisotope layer disposed immediately adjacent the top surface of the ohmic conductive layer. The radioisotope layer can be 63Ni, 147Pm, or 3H. Devices can be stacked in parallel or series. Methods of making the devices are disclosed.
Abstract translation:一种示例性的减薄型紫外线器件包括厚度在约3至50微米之间的N +掺杂碳化硅(SiC)衬底,紧邻SiC衬底的底表面设置的导电层; 紧邻SiC衬底的顶表面设置的N掺杂的SiC外延层,紧邻N掺杂的SiC外延层的顶表面设置的P +掺杂的SiC外延层,紧邻邻近顶部表面的欧姆导电层 P +掺杂的SiC外延层,以及紧邻欧姆导体层的顶表面设置的放射性同位素层。 放射性同位素层可以是63Ni,147Pm或3H。 设备可以并联或串联堆叠。 公开了制造装置的方法。
Abstract:
Delay line memory device, systems and methods are disclosed. In one aspect, a delay line memory device includes a substrate; an electronic unit disposed on the substrate and operable to receive, amplify, and/or synchronize data signals into a bit stream to be transmitted as acoustic pulses carrying data stored in the delay line memory device; a first and a second piezoelectric transducer disposed on the substrate and in communication with the electronic unit, in which the first piezoelectric transducer is operable to transmit the data signals to the acoustic pulses that carry the data through the bulk of the substrate, and the second piezoelectric transducer is operable to transduce the received acoustic pulses to intermediate electrical signals containing the data, which are transferred to the electronic unit via an electrical interconnect to cause refresh of the data in the delay line memory device.
Abstract:
An inertial sensor calibration method and inertial sensor calibration apparatus. One or more diffraction patterns are generated by one or more fixed and/or moveable gratings (inertial sensors) illuminated by an atomically stabilized source attached to a base and detected by an imager. The grating and/or inertial sensor has a designed parameter value and an actual respective parameter value, such as motion or distance that can be determined upon ultra-precise measurement. Such ultra-precise measurement can be used to calibrate the grating or inertial sensor.
Abstract:
An autonomous, self -powered device includes a radioisotope-powered current impulse generator including a spring assembly comprising a cantilever, and a piezoelectric- surface acoustic wave (P-SAW) structure connected in parallel to the current impulse generator. Positive charges are accumulated on an electrically isolated 63Ni thin film due to the continuous emission of ß-particles (electrons), which are collected on the cantilever. The accumulated charge eventually pulls the cantilever into the radioisotope thin-film until electrical discharge occurs. The electrical discharge generates a transient magnetic and electrical field that can excite the RF modes of a cavity in which the electrical discharge occurs. A piezoelectric-SAW resonator is connected to the discharge assembly to control the RF frequency output. A method for generating a tuned RF signal includes inputting an energy pulse to a P-SAWresonator, exciting the resonant frequency thereof, and outputting an RF signal having a frequency tuned to the resonator frequency.
Abstract:
A system that generates short charged particle packets or pulses (e.g., electron packets) without requiring a fast-switching-laser source is described. This system may include a charged particle source that produces a stream of continuous charged particles to propagate along a charged particle path. The system also includes a charged particle deflector positioned in the charged particle path to deflect the stream of continuous charged particles to a set of directions different from the charged particle path. The system additionally includes a series of beam blockers located downstream from the charged particle deflector and spaced from one another in a linear configuration as a beam-blocker grating. This beam-blocker grating can interact with the deflected stream of charged particles and divide the stream of the charged particles into a set of short particle packets. In one embodiment, the charged particles are electrons. The beam blockers can be conductors.
Abstract:
An ultrasonic or acoustic viscosity sensor or viscometer is provided that can be used to accurately measure viscosity for fluid samples of less than 1 µl in volume. Methods for measuring viscosity for fluid samples of less than 1 µl in volume are also provided. The viscosity sensor and methods based thereon enable simultaneous measurement of bulk and dynamic (shear-rate dependent) viscosity of a non-Newtonian fluid. Bulk and dynamic viscosity of the non-Newtonian fluid can be measured simultaneously without separating constituents of the fluid, and thus distinguishing the effect of constituents on the viscosity. Dynamic viscosity of the non-Newtonian fluid can be estimated at varying shear rates, to study the deformability of the constituents of the fluid as a function of shear rate.
Abstract:
There is set forth herein various nanowire structures and methods for fabrication of the same. A nanowire structure herein can be periodic or aperiodic and can have characteristics that optimize performance of the structure for a particular application.