Abstract:
Embodiments of the present disclosure pertain to methods of utilizing force-modulated hybridization to determine the length of an analyte strand, to determine an unknown nucleic acid sequence, or to determine the binding of a nucleotide to an active agent. Additional embodiments of the present disclosure pertain to sample holder devices and methods of utilizing such devices. Further embodiments of the present disclosure pertain to detection devices.
Abstract:
A system and method for resolving and/or mechanically manipulating molecular bonds. A method for resolving molecular bonds includes applying ultrasound to molecules to be manipulated. A magnetic signal associated with the molecules is measured. Whether ultrasound causes dissolution of the bonds of the molecules is determined based on measurements of the magnetic signal.
Abstract:
Methods of quantifying the efficiency of a drug molecule for its targeted receptor, using a differential binding force to quantify the efficiency of a drug molecule to its targeted receptor.
Abstract:
Embodiments of the present disclosure pertain to methods of utilizing force-modulated hybridization to determine the length of an analyte strand, to determine an unknown nucleic acid sequence, or to determine the binding of a nucleotide to an active agent. Additional embodiments of the present disclosure pertain to sample holder devices and methods of utilizing such devices. Further embodiments of the present disclosure pertain to detection devices.
Abstract:
Embodiments of the present disclosure pertain to methods of utilizing force-modulated hybridization to determine the length of an analyte strand, to determine an unknown nucleic acid sequence, or to determine the binding of a nucleotide to an active agent. Additional embodiments of the present disclosure pertain to sample holder devices and methods of utilizing such devices. Further embodiments of the present disclosure pertain to detection devices.
Abstract:
A system and method for resolving and/or mechanically manipulating molecular bonds. A method for resolving molecular bonds includes applying ultrasound to molecules to be manipulated. A magnetic signal associated with the molecules is measured. Whether ultrasound causes dissolution of the bonds of the molecules is determined based on measurements of the magnetic signal.
Abstract:
A method of measuring dissociation of the biomolecular bonds in one or multiple sample wells using super-resolution force spectroscopy (SURFS). SURFS utilizes precise ultrasound radiation to exert an acoustic radiation force on the biomolecular bonds labeled with magnetic particles. The force-induced dissociation of the protein bonds labeled with magnetic particles may be measured as a reduced magnetic signal by a magnetic sensor. The force resolution allows for differentiating biomolecular bonds with an extremely high level of precision. The biomolecular bonds include protein-protein, protein-nucleic acid, nucleic acid-nucleic acid, small molecule-protein, and small molecule-nucleic acid interactions.
Abstract:
A method of measuring dissociation of the biomolecular bonds in one or multiple sample wells using super-resolution force spectroscopy (SURFS). SURFS utilizes precise ultrasound radiation to exert an acoustic radiation force on the biomolecular bonds labeled with magnetic particles. The force-induced dissociation of the protein bonds labeled with magnetic particles may be measured as a reduced magnetic signal by a magnetic sensor. The force resolution allows for differentiating biomolecular bonds with an extremely high level of precision. The biomolecular bonds include protein-protein, protein-nucleic acid, nucleic acid-nucleic acid, small molecule-protein, and small molecule-nucleic acid interactions.