Abstract:
PROBLEM TO BE SOLVED: To provide a driving method for a fluid circuit control valve used for analysis equipment, which contributes to improvement in properties of valve closing and the like.SOLUTION: An embodiment 10 of a valve includes: an inlet 14, an outlet 16 and a passageway 18 connecting the inlet 14 and the outlet 16; a flow determining component 22 for allowing communication/blocking of the passageway 18; and a voice coil-type linear positioning component 26 that is arranged to operate the flow determining component 22 to determine communication/blocking of a flow path, wherein a control signal directed to the linear positioning component 26 is computer-controlled to achieve reliable valve sealing properties, rapid responsiveness, and improved controllability in a small flow rate, and the displacement of an actuator 38 for operating the flow determining component 22 is detected to improve control accuracy.
Abstract:
The present disclosure relates to methodologies, systems and apparatus for cooling pump heads and providing balanced cooling and heat transfer between multiple pump heads. Multi-pump systems that are used to pump fluids that vary greatly in density with minor changes in temperature, such as the mobile phase of a C02-based chromatography system, require highly stable temperature conditions. In order to achieve a substantially equal average heat transfer between multiple pump heads and a coolant fluid, coolant fluid may be flowed through coolant passageways within the pump heads in a recursive and/or parallel coolant flow patterns. Such recursive and/or parallel coolant fluid flow patterns provide increased stability in temperature, compressibility, and density of the fluids passing through a multi-pump system.
Abstract:
Verfahren zur Steuerung eines Fluids, das durch ein chromatographisches System strömt, wobei das Verfahren das Bestimmen eines fluidischen Parameters in Bezug auf die Dichte an einer ersten fluidischen Stelle im Chromatographiesystem umfasst; und, in Reaktion auf den bestimmten fluidischen Parameter, Modifizieren einer volumetrischen Flussrate oder eines Drucks an einer zweiten fluidischen Stelle im chromatographischen System, um eine ausgewählte Massenflussrate des Fluids zu erzeugen.
Abstract:
Die vorliegende Erfindung bezieht sich auf Phasendetektion in Mehrphasen-Fluiden, bei denen zwei Fluidphasen in dem Fluid vorhanden sein können. Offenbart werden Phasendetektionsvorrichtungen und Verfahren zum Bestimmen der Phase(n) (z. B. überkritisch, flüssig und/oder gasförmig) eines Fluids in einem Mehrphasen-Fluidsystem, z. B. einer auf Kohlendioxid basierenden Trennung oder einem anderen Chromatographiesystem.
Abstract:
Vorrichtung zum Detektieren der Phase eines Fluids in einem Mehrphasen-Fluidsystem, umfassend: einen Kanal, der einen Fluidflusspfad definiert; eine Schaltung mit einer optischen Strahlungsquelle und einem Photodetektor; ein Gehäuse, das die Position des Kanals und der Schaltung fixiert, wobei das Gehäuse eine erste Öffnung neben der optischen Strahlungsquelle und eine zweite Öffnung neben dem Photodetektor umfasst, wobei die erste Öffnung in Größe und Form dazu ausgelegt ist, die optische Strahlung von der optischen Strahlungsquelle zum Fluidflusspfad zu filtern, wobei die zweite Öffnung in Größe und Form dazu ausgelegt ist, die optische Strahlung vom Fluidflusspfad zum Photodetektor zu filtern, und wobei die Schaltung den Brechungsindex eines Fluids in dem Fluidflusspfad misst und dabei die Phase des Fluids bestimmt und ferner eine Steuereinrichtung in Kommunikation mit dem Fluidphasendetektor, wobei die Steuereinrichtung basierend auf der von dem Fluidphasendetektor detektierten Fluidphase mindestens eine Variable, die den physikalischen Zustand der Fluidströmung beeinflusst, modulieren kann, und wobei die erste und zweite Öffnung einander gegenüberliegend angeordnet sind.
Abstract:
Disclosed is a system and method of cooling a pump head by transferring heat to the actuator body, which is joined to the pump head via a support plate. In some embodiments the heat transfer is accomplished by means of two conductive plates, one placed on either side of the support plate between it and the pump head and actuator body. In some embodiments the heat transfer is controlled by a thermoelectric device. Also disclosed is a second system and method of cooling fluid to move through a pump head by pre-chilling it.
Abstract:
A liquid chromatography system includes a pumping system with a selector valve in fluidic communication with a pump inlet. The selector valve switches between a first position, in which the selector valve fluidically couples a solvent reservoir to the pump inlet, and a second position, in which the selector valve fluidically couples a pressurized source of liquefied carbon dioxide (for example) to the pump inlet. The liquid chromatography system can perform as a HPLC system (or as an UPLC system) when the selector valve is in the first position and as a CO2-based chromatography system when the selector valve is in the second position. The selector valve can have a third position in which both the fluidic pathway between the solvent reservoir and the pump inlet and the fluidic pathway between the pressurized source and the pump inlet are blocked. This shut-off position advantageously facilitates system maintenance.
Abstract:
A passive pre-heater assembly includes a thermally conductive heat-spreading block and a plurality of passive pre-heaters in thermally conductive communication with the heat-spreading block. The plurality of the pre-heaters exchanges heat with the thermally conductive heat-spreading block. Each pre-heater includes a thermally conductive base in thermal communication with the heat-spreading block, and a plurality of thermally conductive fins is in thermal communication with the thermally conductive base. The plurality of fins of each pre-heater exchanges heat convectively with ambient air and conductively with the thermally conductive base of that pre-heater. A given one of the passive pre-heaters further comprises a tube in thermally conductive contact with the thermally conductive base of the given passive pre-heater. The thermally conductive heat-spreading block exchanges heat with a fluid passing through the tube of the given passive pre-heater.
Abstract:
A column-conditioning enclosure includes a column chamber adapted to hold one or more chromatography separation columns. A duct system provides an airflow path around the column chamber such that the one or more chromatography separation columns held within the column chamber are isolated from the airflow path. An air mover disposed in the airflow path generates a flow of air within the duct system. A heat exchanger system disposed in the airflow path near the air to exchange heat with the air as the air flows past the heat exchanger system. The air circulates through the duct system around the column chamber, convectively exchanging heat with the column chamber to produce a thermally conditioned environment for the one or more chromatography separation columns held within the column chamber.