Abstract:
La cantidad de líquido respirable eliminado de un mamífero por volatilizacion en los pulmones y/o transpiracion en la piel, se detecta midiendo la cantidad de saturacion del gas expiratorio con los vapores de líquido respirable; se evaluan valores de saturacion instantánea para determinar la cantidad de interaccion en los pulmones entre el líquido respirable y el gas respiratorio que fluye en el mismo, y para controlar operaciones seleccionadas de realimentacion para mantener la cantidad máxima posible de interaccion entre ellas; el nivel de saturacion de gas expiratorio también es empleado para optimizar parámetros de operacion de un sistema de recuperacion de líquido respirable a partir del gas expiratorio, directamente del paciente (24) o del gas del ventilador líquido (26); también se emplea el nivel de saturacion de gas expiratorio para efectuar estudios de capacidad funcional residual y para corregir errores en mediciones convencionales de capacidad funcional residual, efectuadas mientras un paciente está sometido a ventilacion parcial de líquido; cuando se emplea líquido respirable como un substituto de sangre, la cuantificacion de la pérdida de líquido respirable por volatilizacion y transpiracion ayuda a determinar cuándo reabastecer el líquido respirable en la corriente sanguínea; los vapores de una forma de líquido respirable, perfluorocarbono, se emplean para determinar la capacidad funcional residual de un pulmon de mamífero.
Abstract:
Una curva de correccion se prepara graficando concentrados de 12CO2 y relaciones de concentracion 13CO2/12CO2 que son determinados en base a una curva de calibracion y absorbencias de 13CO2 y 12CO2 de muestras gaseosas que tienen la misma relacion de concentracion 13CO2/12CO2 pero diferentes concentraciones conocidas de 12CO2; una muestra gaseosa que contiene 13CO2 y 12CO2 como gases componentes se introduce en una celda y se mide espectrométricamente; una concentracion de 12CO2 de la muestra de ensayo gaseoso se determina mediante una medicion espectrométrica; se obtiene un valor de correccion de relacion de concentracion en base a la curva de correccion y la concentracion de 12CO2 de la muestra gaseosa de ensayo determina de este modo; una relacion de concentracion 13CO2/12CO2 se divide por el valor de correccion de relacion de concentracion obtenido de esta forma para corregir la relacion de concentracion 13CO2/12CO2; de este modo, se puede mejorar la precision de la medicion de las relaciones de concentracion de los gases componentes.
Abstract:
A mouthpiece for apparatus for detecting the presence of alcohol or drugs in the breath of a user is generally indicated at (10) and comprises a body (11) and filter insert (12). The body (11) includes a tube (13) and an open end (14) and a closed end (15) in which the breath inlet (16) is offset from the access of the tube (13). The filter insert (12) includes a perforate plate (21) which extends across the breath path to trap the majority of saliva or other contaminates. The size and number of the perforations (24) in the plate are selected so as to provide an overall cross-section which is equal to or greater than the smallest cross-section of the inlet (16).
Abstract:
The amount of breathable liquid eliminated from a mammal through volatilization in the lungs and/or through skin transpiration, is detected by measuring the amount of saturation of the expiratory gas by vapors of the breathable liquid. Instantaneous saturation values are employed to gauge the amount of interaction in the lungs between the breathable liquid and respiratory gas flowing therein, and to control selected feedback operations to maintain the maximum possible amount of interaction therebetween. The saturation level of expiratory gas is also employed to optimize operating parameters of a system for recovering the breathable liquid from the expiratory gas, directly from the patient (24), or from gas of liquid ventilator (26). The saturation level of expiratory gas is also employed to perform functional residual capacity studies and to correct to errors in conventional functional residual capacity measurements performed while a patient undergoes partial liquid ventilation. When breathable liquid is employed as a blood substitute, the quantification of the loss of the breathable liquid from volatilazition and transpiration helps to determine when to replenish the breathable liquid in the bloodstream. Vapors of one form of breathable liquid, perfluorocarbon, are employed to determine the functional residual capacity of a mammal's lung.
Abstract:
Apparatus (10) which is highly portable and even hand-held is used to collect mammalian breath for chemical analysis and as a diagnostic tool for the physician.
Abstract:
The invention concerns a removable hygienic mouthpiece of the type comprising a mouthpiece (1) capable of being adapted on an apparatus for controlling expired air and comprising an inlet connection piece (4) and an outlet connection piece (7) separated by a baffle (10, 11) and it is characterised in that the baffle (10, 11) comprises a foam with open cells and in that the mouthpiece (1) is made of materials treated against microbes. The invention is useful in particular, associated with a breathalyser, for measuring the amount of alcohol in a subject.
Abstract:
Inspiratory flow limitation (IFL) is involved in the pathophysiology of sleep-related breathing disorders. Since the definition of flow-limited cycle is based on a dissociation between flow and respiratory efforts, identification of IFL requires upper airway or intrathoracic pressure measurements. We examined the feasability and accuracy of the analysis of the flow-volume loop of a tidal breath in identifying IFL. The tidal volume was obtained by integration of the instantaneous airflow signal, and the flow-volume loop was reconstructed for each breathing cycle by plotting the instantaneous flow and the tidal volume. The instantaneous inspiratory and expiratory flows were measured at a 50 % of the respective (inspiratory or expiratory) portion of the tidal volume, and a breath-by-breath analysis of the mid tidal volume flow ratio (I/E ratio) was obtained. There was a positive significant relationship between I/E ratio and VImax (maximal inspiratory volume) for flow-limited breathing (correlation coefficient range: 0.25-0.54). With a lower limit of the normal I/E ratio threshold of 0.97, the sensitivity and specificity of the method were both 76 %. Patients having a I/E ratio lower than 0.97 to 1 are classified as suffering IFL. Therefore, the present invention relates to the above-described non-invasive method which is applicable in the evaluation IFL and to an apparatus measuring I/E ratio and correcting IFL.
Abstract:
A simplified, user-friendly method and apparatus for collecting and storing a human breath sample and for detecting and indicating whether the stored breath sample is a true alveolar sample. The invention includes in one embodiment thereof a preferably transparent container (1) and a breath delivery device (6) for directing a subject's breath into the container (1). A closure device (5) is provided for accomodating the insertion of the breath delivery device (6) into the container (1) and for substantially sealing the container (1). A detector (12) is provided for being positioned within the sealed container (1) for detecting and indicating to an observer whether the breath sample stored in the container (1) is a true alveolar sample.
Abstract:
A process and a device (1) are used to collect at least low concentrations of volatile substances in a patient's exhaled respiratory gas. The collector has a respiratory gas channel and a sample gas channel (20, 21) branching off from it and is designed to pre-concentrate volatile substances in low concentration taken from the respiratory gas. To this end, the sample gas channel (20, 21) includes a collector (11) for the samples branched off from the respiratory gas to be examined. Upstream of the sample gas channel (20, 21) there is a changeover valve (7) which is connected to a control device (13) to switch over from the respiratory gas channel to the sample gas channel and to take alveolar gas from several breaths to the collector (11) for the cumulative pre-concentration of the volatile substances. A sample gas conveyor (12) is connected to the sample gas channel (20, 21).
Abstract:
In its raised position, a cap (3) enables air blown in through a cannula (6) to fill the inner space of a tube (1) until an indicator (11, 12 or 13) shows that the volume is sufficient. The cannula (6) is pulled out by the user so that a plug (7) engages a neck (3c) and seals the inlet of a duct (10). The cap (3) is then tightly screwed on to seal the air sample within the tube (1).