一种基于增量学习的太阳能电池缺陷检测持续优化方法

    公开(公告)号:CN117314892B

    公开(公告)日:2024-02-13

    申请号:CN202311584711.3

    申请日:2023-11-27

    Applicant: 中南大学

    Abstract: 本发明涉及计算机视觉技术领域,具体公开了一种基于增量学习的太阳能电池缺陷检测持续优化方法,其构建缺陷检测模型,对缺陷检测模型持续优化更新,具体是:持续输入缺陷数据,更新特征提取器、辅助分类器、特征融合器和分类器,利用梯度下降法进行增量训练,构建未知缺陷类别范例集并调整已知缺陷类别范例集,基于特征提取器的几何中心对特征提取器进行剪枝,实现大幅减轻灾难性遗忘、新旧任务检测持续优化兼顾的缺陷检测。优点是,少量类别数据集即可启动缺陷检测过程,并只需在各阶段存储旧数据集极小规模范例集和输入训练集,保证对缺陷检测模型持续优化更新,同时降低了存储与(56)对比文件Binyi Su 等.Deep Learning-BasedSolar-Cell Manufacturing Defect DetectionWith Complementary AttentionNetwork.IEEE.2021,全文.谢昭 等.独立子空间中的场景特征增量学习方法.计算机研究与发展.2013,(第11期),全文.

    一种基于增量学习的太阳能电池缺陷检测持续优化方法

    公开(公告)号:CN117314892A

    公开(公告)日:2023-12-29

    申请号:CN202311584711.3

    申请日:2023-11-27

    Applicant: 中南大学

    Abstract: 本发明涉及计算机视觉技术领域,具体公开了一种基于增量学习的太阳能电池缺陷检测持续优化方法,其构建缺陷检测模型,对缺陷检测模型持续优化更新,具体是:持续输入缺陷数据,更新特征提取器、辅助分类器、特征融合器和分类器,利用梯度下降法进行增量训练,构建未知缺陷类别范例集并调整已知缺陷类别范例集,基于特征提取器的几何中心对特征提取器进行剪枝,实现大幅减轻灾难性遗忘、新旧任务检测持续优化兼顾的缺陷检测。优点是,少量类别数据集即可启动缺陷检测过程,并只需在各阶段存储旧数据集极小规模范例集和输入训练集,保证对缺陷检测模型持续优化更新,同时降低了存储与计算负荷。

Patent Agency Ranking