-
公开(公告)号:CN114113114B
公开(公告)日:2023-08-18
申请号:CN202111428288.9
申请日:2021-11-29
Applicant: 哈尔滨工业大学
Abstract: 一种大口径元件表面微缺陷检测与修复的自动化工艺方法,涉及工程光学技术领域,用以解决现有技术对于大口径元件表面微缺陷的检测精度低和修复效率低的问题。本发明的技术要点包括:利用暗场相机采集元件表面图像并处理,实现对元件表面多个缺陷区域的粗定位;利用显微相机按照粗定位获得的每个缺陷区域位置采集包含单个缺陷区域的图像并处理,实现对元件表面多个缺陷区域的精定位;利用激光修复装置对多个缺陷区域进行修复;修复完成后对多个修复坑进行修复效果检测。本发明实现了大口径元件表面微缺陷的自动化检测与修复,有效缩短了元件修复时间,减少人工参与程度,为工程上大批量修复光学元件提供了技术支撑。
-
公开(公告)号:CN114113111B
公开(公告)日:2023-08-18
申请号:CN202111428110.4
申请日:2021-11-29
Applicant: 哈尔滨工业大学
Abstract: 大口径熔石英光学元件表面微缺陷的自动化激光修复方法,涉及工程光学技术领域,用以解决现有修复方法存在自动化程度低且效率低下的问题。本发明的技术要点包括:根据元件表面缺陷区域的位置信息和尺寸信息确定修复策略;依据修复策略,利用激光修复装置对元件表面缺陷区域进行修复。进一步地,以修复坑间允许的最小距离作为距离阈值,判断各个缺陷区域之间的交联程度,交联程度大的缺陷区域采用多缺陷修复策略,交联程度小的缺陷区域采用单缺陷修复策略。本发明修复策略制定、修复文件生成以及相应参数激光的输出等过程均实现了自动化,不仅节省大量时间,还大大降低了操作错误率。本发明可应用于对元件表面缺陷的自动修复中。
-
公开(公告)号:CN116441560A
公开(公告)日:2023-07-18
申请号:CN202310249811.4
申请日:2023-03-15
Applicant: 哈尔滨工业大学
IPC: B22F10/25 , B22F10/366 , B22F10/50 , B22F10/30 , B33Y10/00
Abstract: 本发明提供一种低缺陷AlSi10Mg合金直接能量沉积增材制造方法,属于激光金属增材制造领域,为解决现有的采用直接能量沉积技术制造AlSi10Mg合金孔隙率较高的问题。本发明方法包括加工材料预处理与营造加工环境、基材预热处理、第一层沉积层加工、吹粉与层间冷却、沉积层加工表面预热和下一层沉积层加工过程,进行多层沉积,至待加工零件沉积至预定高度,完成加工。本发明通过采用往复扫描、层间冷却、层间偏移、激光扫描预热的方式,在一定加工参数范围内,有效的防止沉积层塌陷、降低沉积层孔隙率,提高直接能量沉积激光增材制造AlSi10Mg产品的力学性能。
-
公开(公告)号:CN116115983A
公开(公告)日:2023-05-16
申请号:CN202310225591.1
申请日:2023-03-09
Applicant: 哈尔滨工业大学
Abstract: 夹爪取球摩擦带射球装置,它包含夹爪取球机构和射球机构;夹爪取球机构可滑动地设置在射球机构上,所述射球机构包含摩擦带发球器、射球框架和链路导向轨;射球框架上对称设置有两个摩擦带发球器,位于每个摩擦带发球器的上下两侧的射球框架上设置有可与球面接触的链路导向轨;每个摩擦带发球器包含电机、固定架、主动轮、从动轮和摩擦带;固定架安装在射球框架上,主动轮由安装在固定架上的电机驱动,从动轮可转动地设置在固定架上,主动轮与从动轮通过可与球面接触的摩擦带传动连接。本发明结构简单,可实现连续的取球射球动作,无需冗余功能,性能稳定可靠。
-
公开(公告)号:CN115309108A
公开(公告)日:2022-11-08
申请号:CN202210971683.X
申请日:2022-08-12
Applicant: 哈尔滨工业大学
IPC: G05B19/408 , G06N3/12
Abstract: 本发明提供了一种基于NSGA‑Ⅱ遗传算法的光学晶体微缺陷修复工艺多目标优化方法,属于光学元件加工技术领域。为了解决现有的微铣削修复研究中缺少对多工艺参数耦合作用并同时考虑表面质量和修复效率的需求进行研究的问题。该方法包括如下步骤:S1、以层铣余量、进给速度、主轴转速和螺旋步距为决策变量,以表面粗糙度Sa和修复时间T为优化目标,构建目标函数;S2、确定多目标决策模型的约束条件;S3、根据构建的目标函数和约束条件,构建多目标决策模型;S4、利用NSGA‑II算法对多目标决策模型中决策变量进行求解;S5、根据加工需求选择所需优先解,用于修复加工。本发明为不同修复表面粗糙度和修复效率需求确定实际的修复加工工艺参数提供了有效方法。
-
公开(公告)号:CN114324273A
公开(公告)日:2022-04-12
申请号:CN202111621353.X
申请日:2021-12-28
Applicant: 哈尔滨工业大学
Abstract: 一种熔融石英光学元件加工表面激光损伤阈值预测方法,它属于工程光学领域,本发明为解决现有的激光损伤阈值测试方法,会破坏熔融石英光学元件加工表面,耗费大量试验材料,且适用性不够广泛问题,本方法按以下步骤进行:步骤一、基于变激发光波长荧光探测实验,确定光学元件加工表面缺陷能级结构;步骤二、基于电子跃迁理论和原子轨道理论,建立光学元件加工表面非线性离化模型;步骤三、给定服役激光波长,计算熔融石英光学元件达到激光损伤阈值时临界自由电子密度;步骤四、获取熔融石英光学元件无缺陷表面各个能级电子密度随时间演变曲线;步骤五、获得熔融石英光学元件加工表面被检位置的激光损伤预测阈值。
-
公开(公告)号:CN114119555A
公开(公告)日:2022-03-01
申请号:CN202111428157.0
申请日:2021-11-29
Applicant: 哈尔滨工业大学
Abstract: 一种基于物距对焦法的大口径元件边缘检测方法,涉及工程光学技术领域,用以解决现有技术在采集图像前不能获得全局清晰的聚焦位置的问题。本发明的技术要点包括:将元件的多个边缘分别移动到相机视野范围内,改变物距,采集获得不同焦平面下每个边缘对应的多个图像;根据每个边缘对应的多个图像的方差变化曲线对每个边缘进行自动清晰聚焦;聚焦完成后,采集包含每个边缘的多个图像,并对多个图像进行处理,从而获取多个边缘的位置;其中,设计边缘自动聚焦策略根据图像的方差变化曲线进行自动聚焦,使得获取的边缘图像更为清晰,进而可以更加准确地获取元件边缘坐标位置。本发明方法易于实现自动化,可用于大口径元件的边缘检测。
-
公开(公告)号:CN114113114A
公开(公告)日:2022-03-01
申请号:CN202111428288.9
申请日:2021-11-29
Applicant: 哈尔滨工业大学
Abstract: 一种大口径元件表面微缺陷检测与修复的自动化工艺方法,涉及工程光学技术领域,用以解决现有技术对于大口径元件表面微缺陷的检测精度低和修复效率低的问题。本发明的技术要点包括:利用暗场相机采集元件表面图像并处理,实现对元件表面多个缺陷区域的粗定位;利用显微相机按照粗定位获得的每个缺陷区域位置采集包含单个缺陷区域的图像并处理,实现对元件表面多个缺陷区域的精定位;利用激光修复装置对多个缺陷区域进行修复;修复完成后对多个修复坑进行修复效果检测。本发明实现了大口径元件表面微缺陷的自动化检测与修复,有效缩短了元件修复时间,减少人工参与程度,为工程上大批量修复光学元件提供了技术支撑。
-
公开(公告)号:CN114113113A
公开(公告)日:2022-03-01
申请号:CN202111428159.X
申请日:2021-11-29
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种用于表面微缺陷定位与识别的三光源显微系统装置,解决了目前的检测方法无法一次获得在不同光源照射条件下的微缺陷图像,缺陷检测准确率低,可检测缺陷的尺寸范围小,光源安装占用空间大,采集的缺陷图像较为单一,难以准确、高效地识别表面微缺陷的问题,包括:背照光源、背照光源散射板、环形光源、同轴镜头、同轴光源和CCD相机,背照光源、背照光源散射板、环形光源、同轴镜头和CCD相机依次序同轴设置,同轴镜头上还安装有同轴光源,同轴光源的中心轴线垂直于同轴镜头的中心轴线,将光学元件置于背照光源散射板和环形光源之间,通过三光源显微系统装置对光学元件的表面缺陷进行定位和识别。
-
公开(公告)号:CN108705692B
公开(公告)日:2020-06-30
申请号:CN201810520541.5
申请日:2018-05-25
Applicant: 哈尔滨工业大学
Abstract: 大口径KDP晶体元件表面激光损伤的微铣削修复工艺方法,属于光学材料与光学元件修复加工技术领域。为了解决软脆KDP晶体元件表面激光损伤点修复时修复轮廓单一、修复表面质量差、效率低等问题。根据修复轮廓的控制方程建立修复点的几何模型;选取加工刀具;创建粗加工修复工序;创建精加工修复工序;将由刀路轨迹计算获得的刀路源文件转换为通用的数控加工NC代码,将NC代码转换为修复机床控制器可识别的加工程序文件;利用粗、精加工NC代码在KDP晶体修复机床上进行精密微铣削修复实验,实现不同激光修复轮廓的高效、高质量加工。能延缓晶体元件表面激光损伤点的增长行为,提高晶体元件抗激光损伤能力并延缓其使用寿命。
-
-
-
-
-
-
-
-
-