-
公开(公告)号:CN104899578B
公开(公告)日:2019-02-12
申请号:CN201510363785.3
申请日:2015-06-26
Applicant: 苏州大学张家港工业技术研究院
IPC: G06K9/00
Abstract: 本发明公开了一种人脸识别的方法,包括:将获取得到的人脸图像数据作为待测样本;利用投影变换矩阵将所述待测样本映射到低维特征空间中,得到投影后的测试样本;在训练样本集合中,查找与所述测试样本距离最近的标准样本作为目标样本;将所述目标样本的类别确定为所述测试样本的类别;其中,所述投影变换矩阵为通过构造的类内邻接矩阵以及类间邻接矩阵,对所述训练样本集合中的多个样本进行训练得到的变换矩阵,以使类间距离最大、类内距离最小。本发明所提供的人脸识别的方法及装置,为正交判别投影分别构造了两个邻接矩阵:类间和类内邻接矩阵,把类内信息和类间信息分开表示,以得到均衡的信息,从而实现类内最小和类间最大的目的。
-
公开(公告)号:CN103218613B
公开(公告)日:2016-04-20
申请号:CN201310123085.8
申请日:2013-04-10
Applicant: 苏州大学
IPC: G06K9/20
Abstract: 本发明公开了一种手写体数字识别方法及装置。该手写体数字识别方法,包括:确定待识别图像;依据像素点的灰度值,确定该待识别图像中的特定的像素点的至少三种像素特征;依据该特定的像素点的至少三种像素特征,分别确定该待识别图像的相应协方差;分别计算该待识别图像的每一协方差与预设的训练图像集合所包含每一类数字类别标签相应的李群均值之间的距离;分别将为该待识别图像的每一个协方差所确定出的多个距离中的最小距离所对应数字类别标签确定为备用数字类别标签;将该备用数字类别标签中个数最多的数字类别标签确定为待识别图像中的待识别数字类别标签。可见,通过利用本方案,可以有效提高手写体数字的识别准确性。
-
公开(公告)号:CN102495944B
公开(公告)日:2014-11-05
申请号:CN201110356343.8
申请日:2011-11-11
Applicant: 苏州大学
IPC: G06F19/00
Abstract: 本发明实施例公开了一种时间序列预测方法、设备和方法,其中方法包括:训练获取的时间序列数据得到训练数据集;利用所述训练数据集训练选定预测器组生成具有多样性的预测器组;提取稀疏信号重构优化函数并求解所述具有多样性的预测器组的加权系数;截获加权系数非零的预测器进行时间序列数据预测。本发明实施例将具有多样性的预测器组的加权系数作为稀疏信号进行重构并求解相应优化函数,所得出的加权系数由于具有稀疏性,利用上述得出的加权系数为非零的预测器进行时间序列数据预测校验,由于所用预测器组的数量精简从而加速了校验过程,且预测准确性得到了提高。
-
公开(公告)号:CN109918532B
公开(公告)日:2023-08-18
申请号:CN201910175051.0
申请日:2019-03-08
Applicant: 苏州大学
IPC: G06F16/583 , G06F18/22 , G06N3/0464 , G06N3/08
Abstract: 本发明实施例公开了一种图像检索方法、装置、设备及计算机可读存储介质。其中,方法包括以图像数据库中的图像对为输入,以图像对映射得到的哈希编码对间的距离、标签类别和图像对的特征相似度为损失值,采用机器学习优化算法优化损失值以训练得到深度哈希映射模型;将待检索图像利用深度哈希映射模型映射为待检索哈希编码;在预先构建的哈希编码库中查找与待检索哈希编码的汉明距离差值满足预设条件的目标图像,作为待检索图像在图像数据库的检索结果进行输出,哈希编码库为将图像数据库中每张图像经深度哈希映射模型映射后所得。本申请有效地解决了相关技术中同一类别图像哈希编码过于一致的问题,从而实现了同一类别图像的准确检索。
-
公开(公告)号:CN109829065B
公开(公告)日:2023-08-18
申请号:CN201910174727.4
申请日:2019-03-08
Applicant: 苏州大学
IPC: G06F16/532 , G06F16/58 , G06N3/0464
Abstract: 本发明实施例公开了一种图像检索方法、装置、设备及计算机可读存储介质。其中,方法包括首先利用卷积层数不同的两个卷积神经网络并联构造双列卷积哈希映射模型,第一卷积神经网络与第二卷积神经网络的池化层数目、池化窗口的大小和步长均相同;该模型包含由第一卷积神经网络和第二卷积神经网络的输出并联而成的第一全连接层及作为哈希编码层的第二全连接层。将待检索图像利用双列卷积哈希映射模型映射为待检索哈希编码;在哈希编码库中查找与待检索哈希编码的汉明距离差值满足预设条件的目标图像,以作为待检索图像在图像数据库的检索结果;哈希编码库为将图像数据库中每张图像经双列卷积哈希映射模型映射后所得。本申请提高图像检索的准确率。
-
公开(公告)号:CN115908828A
公开(公告)日:2023-04-04
申请号:CN202211415263.X
申请日:2022-11-11
Applicant: 苏州大学
IPC: G06V10/32 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/0455 , G06N3/08
Abstract: 本发明涉及图像描述技术领域,尤其是指一种图像描述生成方法及装置。本发明所述的图像描述生成方法,通过局部通道注意力计算图像各个通道的权重,关注不同布纹之间的底层特征差异,从而提升网络的表征能力;通过全局通道注意力将局部通道注意力所提取的特征进行更好的融合。此外,本发明将通道注意力结构进行堆叠,局部邻域向全局进行扩散,局部特征与全局相关性结合,以提取图像局部与全局特征间以及特征通道间依赖关系,从而获得图像的上下文信息,有利于生成更精确的描述。该模块能够减少冗余特征并抑制与任务无关特征的干扰,使得网络高效的利用于生成描述强相关的特征,得到更加准确、质量更高的布纹图像描述。
-
公开(公告)号:CN109636529B
公开(公告)日:2022-04-12
申请号:CN201811536326.0
申请日:2018-12-14
Applicant: 苏州大学
IPC: G06Q30/06
Abstract: 本发明实施例公开了一种商品推荐方法、装置和计算机可读存储介质,依据设定的分类规则,对获取的评分矩阵中的各元素进行分类,构建多个商品子空间;在每个商品子空间中包括有用户对商品的评分信息;计算各商品子空间中目标用户与各剩余用户之间的评分支持度;根据各评分支持度,确定出目标用户的近邻用户集。根据评分规则,从近邻用户集中各用户所对应的近邻商品中筛选出推荐商品。通过计算评分支持度的方式,可以快速的确定出目标用户的近邻用户集,提升了商品推荐的处理效率。并且从近邻用户集所对应的商品中选取推荐商品,使得推荐的商品更加符合用户的实际需求,提高了资源推荐的性能。
-
公开(公告)号:CN112329917A
公开(公告)日:2021-02-05
申请号:CN202011164944.4
申请日:2020-10-27
Applicant: 苏州大学
Abstract: 本发明涉及一种面向限价委托单趋势预测的多层神经网络集成系统及方法,包括:数据预处理模块,用于对输入的训练数据集作归一化处理;网络训练模块,用于将归一化处理后的训练集对多层神经网络进行训练,其中所述多层神经网络包括第一子模型、第二子模型以及第三子模型,且将所述第一子模型、第二子模型以及第三子模型的输出作为集成算法的输入,并将每个子模型赋予设定的权重,通过所述集成算法得到每一类别的最终输出值;限价委托单趋势预测模块,用于将待处理数据集经过所述数据预处理模块后得到三组数据集,将所述三组数据集输入至所述网络训练模块中预测未来的趋势。本发明预测更加精确。
-
公开(公告)号:CN111091093A
公开(公告)日:2020-05-01
申请号:CN201911301677.8
申请日:2019-12-17
Applicant: 苏州大学
Abstract: 本申请提供一种高密度人群的数量估测方法,具体技术方案如下:将目标拍摄图片输入至网络模型中,得到所述目标拍摄图片对应的预测密度图;对所述预测密度图进行求和运算得到人数估测值;本申请使用的网络模型中,通过采用三列具有不同扩张率的空洞卷积结构,可以学习到由前端网络提取的高维特征中尺度不一致的信息,促进网络的计数性能及生成密度图的质量,进而提高人群人数估测的准确性。本申请还提供一种高密度人群的数量估测系统、计算机可读存储介质和一种高密度人群的数量估测终端,具有上述有益效果。
-
公开(公告)号:CN109658210A
公开(公告)日:2019-04-19
申请号:CN201910123041.2
申请日:2019-02-18
Applicant: 苏州大学
IPC: G06Q30/06
Abstract: 本发明公开了一种商品推荐方法,通过获取不同用户分别针对不同商品的评分数据,评分数据用于表征用户对商品的喜欢程度;根据不同用户对商品的评分数据,对不同用户之间的用户相似度进行计算;根据目标用户的近邻用户对待推荐商品的评分数据得到目标用户对待推荐商品的评分数据,以对商品进行推荐。本申请基于近邻传播的商品推荐方法,采用迭代的思想,将每一轮的评分数据带入到下一轮预测评分当中,使得评分矩阵越来越稠密,也致使预测评分越来越精确。因此,本申请可以更好地提高商品推荐的性能。此外,本申请还提供了一种具有上述技术效果的商品推荐装置、设备以及计算机可读存储介质。
-
-
-
-
-
-
-
-
-