-
公开(公告)号:CN111627031B
公开(公告)日:2023-02-28
申请号:CN202010478994.3
申请日:2020-05-29
Abstract: 本发明提出了一种基于瓦屋状多边形的作物根系表型分析装置及方法,其步骤如下:搭建作物根系表型分析装置,及时获取完整根系的彩色图像;对彩色图像进行裁剪,利用图像二值化将根系图像进行分割,采用连通区域标记法保留面积最大的连通区域,得到根系连通区域的二值化图像;通过表示根系像素点的最左端、最右端和最顶部的像素点确定矩形区域,在矩形区域内进行二均值聚类,进一步确定瓦屋状多边形;根据瓦屋状多边形进行根系形态及生长发育规律的动态表型分析。本发明引入瓦屋状多边形来定义根系的覆盖几何形状、密度分布、性状模式等全局特征,实现根系形态及生长发育规律等的动态表型分析;且自动化程度高,对尺度变化不敏感。
-
公开(公告)号:CN112601087B
公开(公告)日:2022-10-18
申请号:CN202011320958.0
申请日:2020-11-23
Applicant: 郑州轻工业大学
IPC: H04N19/14 , H04N19/96 , H04N19/176 , H04N19/147
Abstract: 本发明提出了一种针对H.266/VVC的快速CU分裂模式决策方法,用于解决H.266/VVC编码的计算复杂度高的技术问题。其步骤为:首先,采用原始VTM算法对待编码的当前帧的第一个CTU进行编码,并统计编码过程中该CTU所有CU的ASM,进而得到第一个CTU的最小阈值和最大阈值;其次,在对后续的视频序列编码时,将当前CU的ASM值与最小阈值和最大阈值进行对比,从而判断当前CU是否继续分裂。最后通过纹理方向算法计算需要进行分裂的CU的纹理方向,根据纹理方向选择出最佳CU分裂模式。本发明通过GLCM和SAD的结合,能够在节省大量计算量的前提下,提前预测最佳CU分裂模式,降低了计算复杂度,节省了编码时间。
-
公开(公告)号:CN111654698B
公开(公告)日:2022-03-22
申请号:CN202010534562.X
申请日:2020-06-12
Applicant: 郑州轻工业大学
IPC: H04N19/119 , H04N19/70 , H04N19/96 , G06V10/764 , G06V10/774 , G06K9/62
Abstract: 本发明提出了一种针对H.266/VVC的快速CU分区决策方法,其步骤为:首先,利用传统编码方法对视频序列进行编码,并在编码过程中记录与CU划分的类别相关的特征,并利用改进的F‑score特征选择方法计算特征的得分值,将得分值较高的特征作为特征子集;其次,根据CU划分的类别和特征子集构建改进的有向无环图DAG‑SVM分类器模型;最后,将待划分的CU的纹理复杂度、方向复杂度和量化步长输入改进的有向无环图DAG‑SVM分类器模型中,预测CU最佳划分类别。本发明通过改进的F‑score特征选择方法和改进的有向无环图支持向量机DAG‑SVM模型的结合,能够提前预测最佳CU分区,降低了计算复杂度,节省了编码时间。
-
公开(公告)号:CN112929657A
公开(公告)日:2021-06-08
申请号:CN202110086854.6
申请日:2021-01-22
Applicant: 郑州轻工业大学
IPC: H04N19/119 , H04N19/147 , H04N19/96
Abstract: 本发明提出了一种基于梯度与方差的H.266/VVC快速CU划分方法,其步骤为:首先根据方差值评估当前CU的同质性,判断是否能提前终止当前CU被进一步划分。然后利用Sobel算子提取当前CU的梯度特征,判断当前CU能否进行QT划分,从而跳过BT和TT划分。最后利用Canny算子提取当前CU纹理的边缘特征,根据当前CU的纹理趋向排除垂直或水平划分方向上的MT划分,将另一个方向的MT划分作为候选,将RDO‑cost最小的一个划分方式作为最优划分方式。本发明逐步对CU划分进行决策,通过早期终止和早期跳过加速CU划分过程,在保证编码质量的情况下,明显降低了CU划分的复杂度,大大提高了编码效率。
-
公开(公告)号:CN112291562A
公开(公告)日:2021-01-29
申请号:CN202011183696.8
申请日:2020-10-29
Applicant: 郑州轻工业大学
IPC: H04N19/159 , H04N19/172 , H04N19/64
Abstract: 本发明提出了一种针对H.266/VVC的快速CU分区和帧内模式决策方法,其步骤为:首先,当CU大小为第一种尺寸时,选择有效特征来区分CU分区模式;其次,通过有效特征在线训练SVM分类器模型,并利用训练好的SVM分类器模型用于确定第一种尺寸对应的CU分区模式;当CU大小为第二种尺寸时,分别计算五个分割模式下CU的方差的方差,并将最大值对应的分割模式作为CU的最佳模式;最后,根据计算的划分后的CU的像素值偏差PVD将帧内预测模式分为垂直帧内模式和水平帧内模式,并使用改进的搜索方式确定最佳帧内预测模式。本发明既缩短了CU划分的时间,又减少了需要计算的帧内预测模式的数量,可以在保持编码质量的同时降低编码的计算复杂度。
-
公开(公告)号:CN111429497A
公开(公告)日:2020-07-17
申请号:CN202010201383.4
申请日:2020-03-20
Applicant: 郑州轻工业大学
Inventor: 赵进超 , 张秋闻 , 王兆博 , 王祎菡 , 崔腾耀 , 赵永博 , 郭睿骁 , 王晓 , 蒋斌 , 黄立勋 , 张伟伟 , 钱晓亮 , 吴庆岗 , 常化文 , 魏涛 , 孙丽君
Abstract: 本发明提出了一种基于深度学习和多特征融合的自适应CU拆分决策方法,其步骤为:首先,利用标准偏差计算当前CU的纹理复杂度SD,再利用量化参数函数和深度函数构建阈值模型,将当前CU分为复杂CU和均匀CU;其次,如果复杂CU属于边缘CU,则利用基于多特征融合的CNN结构对复杂CU进行判断是否拆分;否则,利用基于自适应的CNN结构对复杂CU进行判断是否拆分。本发明将深度学习和多特征融合相结合,解决了编码复杂性的问题。基于多特征融合的CNN结构和基于自适应的CNN结构均可成功处理训练样本,避免计算所有与复杂CU的率失真RDO,从而降低了计算复杂度,节省了编码时间。
-
公开(公告)号:CN111212292A
公开(公告)日:2020-05-29
申请号:CN202010046795.5
申请日:2020-01-16
Applicant: 郑州轻工业大学
IPC: H04N19/96 , H04N19/176 , H04N19/119 , H04N19/147 , H04N19/109 , H04N19/11 , H04N19/19 , H04N19/14
Abstract: 本发明提出了一种基于H.266的自适应CU分区和跳过模式方法,其步骤为:首先,利用编码器将视频划分为编码树单元;其次,根据编码树单元的不同分别利用改进的贝叶斯决策或相邻块单元的RD成本信息对CU块进行分割;再根据分割后的子CU块的相邻块及分割前的CU块的相关性,计算子CU块的相邻块及分割前的CU块的RD成本的平均值,并作为帧间预测的阈值;最后,根据子CU块的RD成本与帧间预测的阈值的关系,判断子CU块是否帧间预测确定最佳编码模式。本发明利用时间和空间的相关性分析当前CU块的特征,进行自适应CU分区及早期跳过模式检测,有效降低了CU分区以及预测过程的复杂度,从而加速编码过程。
-
公开(公告)号:CN111429497B
公开(公告)日:2023-05-05
申请号:CN202010201383.4
申请日:2020-03-20
Applicant: 郑州轻工业大学
Inventor: 赵进超 , 张秋闻 , 王兆博 , 王祎菡 , 崔腾耀 , 赵永博 , 郭睿骁 , 王晓 , 蒋斌 , 黄立勋 , 张伟伟 , 钱晓亮 , 吴庆岗 , 常化文 , 魏涛 , 孙丽君
IPC: G06T7/40 , G06T7/136 , G06T7/13 , G06V10/774 , G06V10/764 , G06V10/80 , G06V10/82 , G06N3/0464
Abstract: 本发明提出了一种基于深度学习和多特征融合的自适应CU拆分决策方法,其步骤为:首先,利用标准偏差计算当前CU的纹理复杂度SD,再利用量化参数函数和深度函数构建阈值模型,将当前CU分为复杂CU和均匀CU;其次,如果复杂CU属于边缘CU,则利用基于多特征融合的CNN结构对复杂CU进行判断是否拆分;否则,利用基于自适应的CNN结构对复杂CU进行判断是否拆分。本发明将深度学习和多特征融合相结合,解决了编码复杂性的问题。基于多特征融合的CNN结构和基于自适应的CNN结构均可成功处理训练样本,避免计算所有与复杂CU的率失真RDO,从而降低了计算复杂度,节省了编码时间。
-
公开(公告)号:CN112291562B
公开(公告)日:2022-06-14
申请号:CN202011183696.8
申请日:2020-10-29
Applicant: 郑州轻工业大学
IPC: H04N19/159 , H04N19/172 , H04N19/64
Abstract: 本发明提出了一种针对H.266/VVC的快速CU分区和帧内模式决策方法,其步骤为:首先,当CU大小为第一种尺寸时,选择有效特征来区分CU分区模式;其次,通过有效特征在线训练SVM分类器模型,并利用训练好的SVM分类器模型用于确定第一种尺寸对应的CU分区模式;当CU大小为第二种尺寸时,分别计算五个分割模式下CU的方差的方差,并将最大值对应的分割模式作为CU的最佳模式;最后,根据计算的划分后的CU的像素值偏差PVD将帧内预测模式分为垂直帧内模式和水平帧内模式,并使用改进的搜索方式确定最佳帧内预测模式。本发明既缩短了CU划分的时间,又减少了需要计算的帧内预测模式的数量,可以在保持编码质量的同时降低编码的计算复杂度。
-
公开(公告)号:CN112929658A
公开(公告)日:2021-06-08
申请号:CN202110161928.8
申请日:2021-02-05
Applicant: 郑州轻工业大学
IPC: H04N19/122 , H04N19/147 , H04N19/159 , H04N19/186 , H04N19/96
Abstract: 本发明提出了一种针对VVC的基于深度强化学习的快速CU分区方法,用于解决现有编码技术中存在的计算复杂性和编码性能不平衡的技术问题。其步骤为:首先,通过计算率失真值的方式分别对视频序列中的单帧图像进行划分得到大小为32×32的CU,并保存每个32×32的CU的初始状态;其次,分别将每个32×32的CU的初始状态及其对应的动作输入DQN中进行训练,输出每个32×32的CU的最佳划分方式。本发明将拆分32×32的CU划分情况视为状态,将划分模式决策视为动作,将率失真值作为奖励,并由编码器作为智能体来连续做出编码决策。并通过DQN对32×32的CU进行编码模式的选择,既保证了迭代的稳定性,在不降低编码性能的前提下降低了计算复杂性。
-
-
-
-
-
-
-
-
-