-
公开(公告)号:CN113868594A
公开(公告)日:2021-12-31
申请号:CN202111088599.5
申请日:2021-09-16
Applicant: 北京控制工程研究所
Abstract: 本发明涉及一种正反双向推扫动中成像偏流角计算方法及系统,适用于高分辨率对地遥感观测领域,其观测卫星在遥感成像过程中三轴均具有主动旋转角速度的姿态控制。本发明选取成像卫星当前目标姿态为基准,进行了沿卫星飞行轨迹正向推扫和反向推扫成像的偏流角计算,能够实现单次成像区间多条带拼接极大的拓展了相机成像幅宽。在正反向推扫过程中,首先计算了不同方法的偏流角的增量,将偏流角的增量转化为姿态矩阵更新目标姿态矩阵,并将更新后的姿态矩阵作为姿态控制的目标姿态矩阵。通过姿态控制实现对目标姿态的跟踪控制,提升了反向推扫过程中的姿态控制性能。
-
公开(公告)号:CN108897239B
公开(公告)日:2021-03-26
申请号:CN201810714038.3
申请日:2018-06-29
Applicant: 北京控制工程研究所
Abstract: 一种航天器两级姿态控制模拟系统,用于验证航天器“超高精度指向”、“超高稳定度控制”、“超敏捷控制”等三超控制技术。验证系统包括:星体、载荷模拟器、主动指向平台、星体一级控制回路和载荷模拟器二级控制回路;星体一级控制回路和载荷模拟器二级控制回路均包括:控制单元、执行机构、测量单元;星体一级控制回路和载荷模拟器二级控制回路通过平台连接;主动指向平台为载荷模拟器二级控制回路提供主动控制力;载荷模拟器通过主动指向平台将主动控制力的反作用力传递给星体一级控制回路。本发明构建的航天器两级姿态控制模拟系统可验证三超平台航天器多级复合控制技术以及控制性能指标。
-
公开(公告)号:CN108646775B
公开(公告)日:2021-03-26
申请号:CN201810587476.8
申请日:2018-06-08
Applicant: 北京控制工程研究所
IPC: G05D1/08
Abstract: 一种三超平台敏捷机动与快速稳定控制方法,适用于极高分辨率对地观测、空天动目标敏捷跟踪等具有载荷敏捷机动与快速稳定需求的领域。所设计的“三超”平台包括星体一级姿态控制以及主动指向超静平台二级控制。在大角度快速机动过程中,星体一级进行主动姿态控制,实现6(°/s)敏捷机动,主动指向超静平台进行被动隔振控制。当星体一级姿态机动到位且载荷姿态误差在主动指向超静平台控制范围内时,采用多项式规划方法对机动到位后的载荷偏差姿态Δθp进行平滑过渡,并进行主动指向超静平台二级控制实现载荷快速稳定。仿真结果表明,载荷快速稳定时间优于2.5s,而星体平台稳定时间为6s。
-
公开(公告)号:CN111619829A
公开(公告)日:2020-09-04
申请号:CN202010393092.X
申请日:2020-05-11
Applicant: 北京控制工程研究所
IPC: B64G1/24
Abstract: 一种基于主动指向超静平台的多级协同控制方法,适用于天文观测、高分辨率对地观测等具有载荷超高精度确定需求的领域。在星体姿控系统+快反镜的两级控制系统的基础上,在航天器星体与载荷之间安装具有指向功能的超静平台,组成由一级星体姿控、二级载荷姿控和三级快摆镜组成的三级控制系统。实现对期望姿态的高精度控制。本发明针对新型航天器平台三级复合系统,提出了基于主动指向超静平台的多级协同控制方法,设计星体一级、载荷二级和快反镜三级系统控制律;在满足系统响应需求的前提下,实现多级多带宽复合控制,解决了星体-载荷-快速反射镜三者之间的协同控制问题。
-
公开(公告)号:CN111605733A
公开(公告)日:2020-09-01
申请号:CN202010350519.8
申请日:2020-04-28
Applicant: 北京控制工程研究所
IPC: B64G1/24
Abstract: 一种航天器自治协同粗精分层主被一体三超控制参数确定方法,适用于天文观测、高分辨率对地观测等具有载荷超高精度确定需求的领域。针对具有超高精度、超高稳定度、超敏捷控制的航天器三超控制提供了控制参数设计方法,基于指标分解的方法分别对航天器三超控制系统各控制器参数进行设计,提升了设计效率与控制性能。主要设计思路为:1)首先根据三超控制系统架构,建立星体、载荷、快速反射镜三级控制的控制模型;2)根据三超控制系统模型,推导三级控制的各级控制回路传递函数;3)根据选定的敏感器与执行机构的噪声特性,通过频域分析的方法设计各级控制器参数,使得各级控制回路的功率谱密度满足设计指标,实现航天器的三超控制性能。
-
公开(公告)号:CN108897239A
公开(公告)日:2018-11-27
申请号:CN201810714038.3
申请日:2018-06-29
Applicant: 北京控制工程研究所
Abstract: 一种航天器两级姿态控制模拟系统,用于验证航天器“超高精度指向”、“超高稳定度控制”、“超敏捷控制”等三超控制技术。验证系统包括:星体、载荷模拟器、主动指向平台、星体一级控制回路和载荷模拟器二级控制回路;星体一级控制回路和载荷模拟器二级控制回路均包括:控制单元、执行机构、测量单元;星体一级控制回路和载荷模拟器二级控制回路通过平台连接;主动指向平台为载荷模拟器二级控制回路提供主动控制力;载荷模拟器通过主动指向平台将主动控制力的反作用力传递给星体一级控制回路。本发明构建的航天器两级姿态控制模拟系统可验证三超平台航天器多级复合控制技术以及控制性能指标。
-
公开(公告)号:CN108846504A
公开(公告)日:2018-11-20
申请号:CN201810514486.9
申请日:2018-05-25
Applicant: 北京控制工程研究所
Abstract: 一种超敏捷卫星区域多点目标任务优化方法及系统,本发明能够保证对目标点的快速高效筛选,形成优化的区域内多点目标任务集合。在确定的任务执行区间内,采用综合最佳分辨率、最大能源获取能力等因素的加权平均方法确定最佳成像时间点,保证成像任务的最佳质量。为了保证任务冲突问题的高效解决,引入性价比判断原则,进行优先级序,保证高优先级任务的有效执行。在区域内重叠任务的解决,采用了兼顾了两个目标点之间姿态机动角度最小和先可见的任务优先观测的迭代排序方法,有效地保证任务的高效执行。本发明特别适用于面向超敏捷卫星的区域内多点目标成像任务的星上规划,能有高效完成任务筛选,冲突解决等关键问题。
-
公开(公告)号:CN108820255A
公开(公告)日:2018-11-16
申请号:CN201810634461.2
申请日:2018-06-20
Applicant: 北京控制工程研究所
IPC: B64G1/24
Abstract: 本发明提供了一种动目标跟瞄的三超控制全物理验证系统及方法。该系统包括星体姿控模拟系统、主动指向超静平台控制模拟系统、载荷模拟器、动目标模拟组件、光学补偿快反镜控制模拟系统和验证计算单元。星体姿控模拟系统模拟星体姿态;主动指向超静平台控制模拟系统,模拟主动指向超静平台;载荷模拟器,模拟载荷;光学补偿快反镜控制模拟系统产生激光光束,将反射后的激光光束偏转轴进行角度放大后传输至动目标模拟组件靶面上,形成光斑,通过调整光束的偏转角度,控制光斑持续跟踪动目标模拟组件靶面中心点;验证计算单元计算由三级姿态控制确定的动目标方位角,将其与动目标实际方位角作差,得到三级姿态控制确定的目标方位误差。
-
公开(公告)号:CN108667206A
公开(公告)日:2018-10-16
申请号:CN201810461054.6
申请日:2018-05-15
Applicant: 北京控制工程研究所
IPC: H02K7/10 , H02K41/035
CPC classification number: H02K7/10 , H02K41/0354
Abstract: 一种基于分离式双膜簧的智能挠性作动器,包括:柔性铰链(2)、支杆(3)、开槽弹簧安装盖(4)等,上阻尼安装片(19),下阻尼安装片(20),其中音圈电机(12)包括音圈电机动子(21)和音圈电机定子(22)。安装完成后,通过大量程高精度电涡流位移传感器(17)的测量反馈和大行程快响应音圈电机(12)的控制输出,实现智能挠性作动器的振动隔离、扰振抑制和精确指向调节。本发明的智能挠性作动器采用分离式双膜簧并联结构形式,运动行程大,控制精度高,可广泛的应用于航天器超高精度、超高稳定度、超敏捷控制领域。
-
公开(公告)号:CN119269050A
公开(公告)日:2025-01-07
申请号:CN202411374380.5
申请日:2024-09-29
Applicant: 北京控制工程研究所
Abstract: 本发明提供了一种挠性作动器故障诊断方法。方法包括:基于构建得到的挠性作动器运动学模型对主动驱动机构的输出力进行调整,以使所述输出力呈正弦波形式;以所述主动驱动机构每个时刻的输出力大小为判定条件,利用其中一个直线位移敏感器为基准对其他位移敏感器进行标定,以使所述主动驱动机构和每个直线位移敏感器均位于同一基准;根据所述主动驱动机构的输出力,得到所述主动驱动机构的期望位移;将所述主动驱动机构的期望位移值、标定后的每个直线位移敏感器的输出位移值两两作差后分别与预设诊断系数相比较,以分别对所述主动驱动机构和每个直线位移敏感器进行故障诊断。本方案,能够实现航天器在轨运行期间挠性作动器故障的准确诊断。
-
-
-
-
-
-
-
-
-