-
公开(公告)号:CN114875660B
公开(公告)日:2023-01-17
申请号:CN202210540527.8
申请日:2022-05-17
Applicant: 厦门大学
IPC: D06M11/83 , D06M13/513 , D06M10/02 , D06M13/144 , D06M13/127 , D06B3/10 , D06M101/06 , D06M101/32 , D06M101/34 , D06M101/20 , D06M101/40
Abstract: 本发明涉及导电纺织物领域,特别涉及一种介导金属纳米线直接吸裹的导电纺织布及其制备方法,其中,采用该制备方法可获得高质量的导电纺织布,具体为将纺织布依次经过氧等离子处理和硅烷偶联剂改性处理获得金属介种吸附位点;纺织布置于有机液相反应溶液并在纤维表面静止种入金属纳米介导颗粒;纯化后进入第二阶段,金属纳米线网络直接在纺织布表面的介导生长及网络吸裹反应,获得全纤维吸裹金属纳米线网络的导电纺织布。该方法可一次性直接在任何纤维纺织布上做原位金属纳米线网络化吸裹,并获得性能优良的导电纺织材料,可应用于未来可穿戴及智能纺织品,以及电子服饰生产。
-
公开(公告)号:CN113502603B
公开(公告)日:2022-06-03
申请号:CN202110651892.1
申请日:2021-06-11
Applicant: 厦门大学
Abstract: 本发明涉及抗菌材料制备领域,特别涉及一种铜基纳米线抗菌材料的制备方法与应用以及抗菌熔喷布的制备方法。铜基纳米线抗菌材料的制备方法包括以下步骤:S100、以还原剂和铜金属无机盐为原料,在长链烷基胺溶剂体系下经溶剂热法制得纯铜纳米线;S200、取纯铜纳米线于亲水分散溶剂中,加入弱酸溶液进行酸洗;S300、取酸洗后的纯铜纳米线经液相氧化法或高温空气氧化法或CVD氧化法氧化制得氧化铜纳米线,即铜基纳米线抗菌材料。该铜基纳米线抗菌材料的氧化程度高、充分且均匀、氧化后纳米线仍保持细长状结构,杀菌效果好;且其在熔喷布上附着稳定性强,以使其应用于熔喷布时,杀菌效果显著且稳定持久。
-
公开(公告)号:CN113380603B
公开(公告)日:2022-05-17
申请号:CN202110541046.4
申请日:2021-05-18
Applicant: 厦门大学
IPC: H01L21/02
Abstract: 本发明公开了高硼组分二维III族多元氮化物混合晶体及其制备方法。该方法为低压化学气相沉积方法,设置级联式递进三温区结构,并于中段梯度温区进行加速混晶分子的气相预替位,实现高效可控二维混晶。本发明制备的高硼组分二维III族多元氮化物混合晶体表面平整性好,用于器件结构中的层间匹配度高,混合晶体中的硼组分高;可作为优良衬底用于制备高质量InAlGaN等多元氮化物半导体,制备性能优良的中子探测器、深紫外LED、深紫外探测器;可广泛应用于紫外固化光源、紫外光通信、紫外空气净化、紫外医疗、紫外水净化、紫外光解油烟等领域。
-
公开(公告)号:CN113990978A
公开(公告)日:2022-01-28
申请号:CN202111198864.5
申请日:2021-10-14
Applicant: 厦门大学
IPC: H01L31/107 , H01L31/0336 , H01L31/18
Abstract: 本发明公开了一种电压调制变波段光电探测器及其制作方法,该光电探测器为雪崩型光电探测器,导电薄膜作为第一电极,二维材料作为载流子阻挡层,具有纳米阵列结构的半导体材料作为光子吸收层,因此外部辐射光子更容易被光子吸收层捕获,产生光生载流子,光生载流子被载流子阻挡层阻挡并在载流子阻挡层及两侧形成强电场,使得载流子被强电场加速实现雪崩增益,同时,强电场调控光生电子跃迁路径以改变光子吸收层响应的光子波长,以此可以获得一种高响应度,并且无需滤光片、更换半导体材料即可实现探测波段可调的光电探测器件,有助于提高器件对微弱光信号的探测能力和适用性。
-
公开(公告)号:CN113880189A
公开(公告)日:2022-01-04
申请号:CN202111092041.4
申请日:2021-09-17
Applicant: 厦门大学
IPC: C02F1/32
Abstract: 本发明涉及动态水杀菌消毒设备,特别涉及一种差速式对称破缺结构及深紫外过流水杀菌器,其中差速式对称破缺结构具有一内腔,差速式对称破缺结构的上端面上设有入水口和出水口,入水口直接与内腔相连通;出水口连接一出水细管并延伸至接近下端面,利用出水细管直径与内腔直径的大幅度差异,形成进水降速和出水加速的差速式结构;且入水口须略偏离上端面对称中心设置、出水口则处于上端面对称中心的最远点处,从而形成对称破缺结构。利用对称破缺,有效实现水流双回旋从而增长流体及细菌在腔体内的停留时间。应用于深紫外过流水杀菌器,在保证高流速的情况下,扩充了现有技术在探究入水口和出水口设置对于杀菌效果影响的空白,大幅提升了杀菌效率。
-
公开(公告)号:CN109742184B
公开(公告)日:2021-11-16
申请号:CN201811511371.0
申请日:2018-12-11
Applicant: 厦门大学
IPC: H01L31/18 , H01L31/0224 , B82Y30/00 , B82Y40/00
Abstract: 本发明提供一种半导体包裹金属纳米线的制备方法,涉及一维核壳结构纳米材料。以水热法合成质量高的纯金属纳米线,将半导体(如AlN、InN、GaN、ZnO等)材料直接包裹于金属纳米线表面,形成核壳结构,从而在一维的单根纳米线上实现了金属‑半导体接触。这种新型的核壳纳米材料结合了半导体与导体的特性,可以用于制作功能性异质结构的半导体器件,实现纳米线网络上的纳米器件,在光电信息领域可以得到广泛的应用。
-
公开(公告)号:CN111063753B
公开(公告)日:2021-08-03
申请号:CN201911058896.8
申请日:2019-10-31
Applicant: 厦门大学
IPC: H01L31/0392 , H01L31/0352 , H01L31/0216 , H01L31/101 , H01L31/18
Abstract: 本发明公开了一种利用Mg掺杂量子阱增强发光效率的AlGaN基深紫外LED外延结构及其制备方法。该深紫外LED结构包括衬底、缓冲层、AlN层、超晶格应力调控/位错过滤层、非掺杂AlGaN层、n型AlGaN层、Mg掺杂的有源发光区多量子阱层、p型AlGaN层以及p型GaN接触层。本发明在LED的多量子阱有源发光层的阱层中间三分之一进行Mg杂质掺杂,以提高LED的内量子效率和光提取效率。相比于非掺杂多量子阱结构,Mg掺杂多量子阱结构可抑制量子限制斯塔克效应,提高电子和空穴波函数的空间交叠以及辐射复合效率,并可提供更多空穴参与辐射复合,提高内量子效率。并且Mg掺杂还可引入局域应变场,加大量子阱中的压应变,提升TE偏振光比例,最终提高AlGaN基深紫外LED光提取效率。
-
公开(公告)号:CN112063380B
公开(公告)日:2021-06-29
申请号:CN202010889666.2
申请日:2020-08-28
Applicant: 厦门大学
Abstract: 本发明涉及核壳结构纳米材料领域,特别涉及一种有机发光材料包裹金属纳米线的复合材料及其制备方法,所述复合材料为核壳结构纳米线,以金属纳米线为内核,在金属纳米线表面包裹有机发光材料形成核壳机构。先以水热法合成纯金属纳米线,再将有机发光材料包裹到金属纳米线表面,形成核壳结构,从而在一维的单根金属纳米线上实现金属‑有机发光材料复合的核壳结构。这种新型的核壳结构的纳米材料将有机发光材料和金属整合在一起,可用于制作纳米级别的发光器件,进而实现纳米级别的类似OLED结构的发光器件,将给光电信息领域带来前所未有的新应用;不仅克服了成本高的问题,还满足发光器件具有柔性的特性要求。
-
公开(公告)号:CN112864289A
公开(公告)日:2021-05-28
申请号:CN202110188161.8
申请日:2021-02-08
Applicant: 厦门大学
Abstract: 本发明公开了一种低电流Micro LED芯片外延结构,包括由下至上依次设置的衬底、缓冲层、非故意掺杂GaN层、n型GaN层、InGaN/InGaN量子阱有源层以及p型GaN层,其中所述InGaN/InGaN量子阱有源层的周期数为2个,且所述InGaN/InGaN量子阱有源层之上不设置电子阻挡层。跟传统工作在大电流、大功率下的LED外延结构相比,本发明提供的Micro‑LED芯片的外延结构及其制备方法可提高电子与空穴的注入效率、载流子匹配效果、内量子效率,最终提高了Micro‑LED芯片的整体发光效率,可解决Micro‑LED芯片随着尺寸减小而效率降低的难题,在超高分辨率的Micro‑LED新型显示技术中具有很大的应用潜力。
-
公开(公告)号:CN112098481A
公开(公告)日:2020-12-18
申请号:CN202010864102.3
申请日:2018-03-30
Applicant: 厦门大学
Abstract: 本发明涉及氮化物半导体材料p型电导技术领域,特别涉及一种用于氮化物半导体材料除氢激活的装置及氮化物半导体材料除氢激活的方法。本发明采用恒电位电化学装置,通过打断p型杂质与H原子的键连,并将H从样品中移除,激活p型杂质的受主活性,在外加电压和电解液离子的共同作用下,H原子与p型杂质的键连可被有效打断并脱离样品,从而使p型杂质被迅速激活,空穴浓度获得提高,可极大地改善p型材料的导电特性。此方法装置简单、操作简便、常温工作,可制备具有良好导电特性的p型氮化物半导体材料,且可对完整器件结构晶圆片做后期处理,在可见光、紫外、深紫外LED、LD、探测器等光电子领域中有着广泛的应用前景和开发潜力。
-
-
-
-
-
-
-
-
-