基于深度特征融合的疾病相关circRNA预测系统

    公开(公告)号:CN117012382A

    公开(公告)日:2023-11-07

    申请号:CN202310581700.3

    申请日:2023-05-22

    Abstract: 基于深度特征融合的疾病相关circRNA预测系统,本发明涉及疾病相关circRNA预测系统。本发明的目的是为了解决现有基于机器学习的方法只是将circRNA和disease的特征分别处理后进行简单的拼接,只关注网络中相邻结点的特征和本身的特征,没有将disease的特征信息与circRNA的特征信息进行整合,导致disease的特征与circRNA特征中的有效信息没有得到充分利用,对disease与circRNA的关联性预测准确率低的问题。系统包括:circRNA‑disease之间的关联关系获取模块、矩阵获取模块、circRNA整合相似性矩阵获取模块、disease整合相似性矩阵获取模块、局部特征提取模块、circRNA的全局特征提取模块、disease的全局特征提取模块、disease特征获取模块、circRNA特征获取模块、disease与circRNA的关联预测模块、待测模块。本发明用于生物信息领域。

    基于深度特征融合的疾病相关circRNA预测系统

    公开(公告)号:CN117012382B

    公开(公告)日:2024-08-23

    申请号:CN202310581700.3

    申请日:2023-05-22

    Abstract: 基于深度特征融合的疾病相关circRNA预测系统,本发明涉及疾病相关circRNA预测系统。本发明的目的是为了解决现有基于机器学习的方法只是将circRNA和disease的特征分别处理后进行简单的拼接,只关注网络中相邻结点的特征和本身的特征,没有将disease的特征信息与circRNA的特征信息进行整合,导致disease的特征与circRNA特征中的有效信息没有得到充分利用,对disease与circRNA的关联性预测准确率低的问题。系统包括:circRNA‑disease之间的关联关系获取模块、矩阵获取模块、circRNA整合相似性矩阵获取模块、disease整合相似性矩阵获取模块、局部特征提取模块、circRNA的全局特征提取模块、disease的全局特征提取模块、disease特征获取模块、circRNA特征获取模块、disease与circRNA的关联预测模块、待测模块。本发明用于生物信息领域。

Patent Agency Ranking