一种非结构化环境的特种车辆自动驾驶路径规划方法

    公开(公告)号:CN117346805B

    公开(公告)日:2024-09-20

    申请号:CN202311150868.5

    申请日:2023-09-07

    Abstract: 一种非结构化环境的特种车辆自动驾驶路径规划方法,通过SLAM地面分割算法,将三维高度信息存储于相应栅格,获得非结构环境占用栅格图,再将所述栅格图地形数据划分为训练集和测试集;结合感知模块输入信息及特种车辆动力学建模,从栅格图地形数据中提取可通行区域,实现风险图构建;根据风险图构造自适应性的奖励函数,搭建强化学习模型以及Agent的神经网络;基于构建非结构化环境测试机进行训练,在每个训练周期初始化阶段构建随机函数,随机化起点和终点位置,使系统具泛化性;通过强化学习训练获得策略网络,在测试集中执行路径规划,实现非结构化环境下高效的处理环境信息,提高特种车辆面对不同地形的适应性及有效的自动驾驶。

    一种基于整体注意力的矿井图像超分辨率重建系统及方法

    公开(公告)号:CN117173024A

    公开(公告)日:2023-12-05

    申请号:CN202311213700.4

    申请日:2023-09-20

    Abstract: 本发明属于图像超分辨率重建技术领域,涉及一种基于整体注意力的矿井图像超分辨率重建系统及方法;浅层特征输入到深层特征提取模块,深层特征提取模块由N个信息蒸馏块堆叠组成;层间融合注意力机制模块由M个层间金字塔注意力以金字塔结构组成,并通过1×1卷积层来降低维度以减少计算量和参数量,然后输入到3×3卷积层,并引入长跳跃连接,输出融合结果作为上采样及重建模块的输入;得到高分辨率图像;以信息蒸馏网络为框架,引入增强型自校准卷积可以有效地平衡好计算效率和网络性能,更满足现实应用的需求;层间融合注意力机制对多个信息蒸馏块的输出特征图自适应地分配权重,在融合处理后输入重建模块以实现不同深度特征图地充分利用。

    一种用于可穿戴头盔的单目图像深度估计方法

    公开(公告)号:CN115423857A

    公开(公告)日:2022-12-02

    申请号:CN202211242648.0

    申请日:2022-10-11

    Abstract: 本发明公开了一种用于可穿戴头盔的单目图像深度估计方法,涉及图像处理技术领域,包括如下步骤:以矿井图像序列作为训练数据,建立进行单目深度估计的深度卷积神经网络模型的训练模型,并从卷积神经网络的平面系数解码器中计算出能预测井下图像深度图的平面系数;基于所述平面系数预测出初始井下图像深度图,根据曼哈顿结构法向检测得到预测法向量,从而与对齐法线相似性约束;通过共平面法向深度约束估计,提取初始预测深度和平面差异求得的深度图,利用两者风格矩阵进行余弦相似度约束。本发明基于能预测井下图像深度图的平面系数间接再预测出深度图,打破了传统的生成初始深度图的方法,且使训练约束的起点高,有效提升了后期深度估计效果。

    一种面向三维场景重建的高精度单目深度估计系统及方法

    公开(公告)号:CN115272438A

    公开(公告)日:2022-11-01

    申请号:CN202210999767.4

    申请日:2022-08-19

    Abstract: 本发明公开一种面向三维场景重建的高精度单目深度估计系统及方法,属于图像处理技术领域,在编码器处通过引入Vision Transformers主干网络,ViT主干网络代替卷积网络作为密集预测的主干架构,以恒定的和相对较高的分辨率处理表示,并在每个阶段都有一个全局的接受域,以减少卷积网络中下采样过程中的信息丢失,从而获取图像更多的细节特征和感受野。在解码器处通过利用小波变换来捕获深度图中深度不同的平坦区域之间的深度“跳跃”,这些“跳跃”可以很好地在高频分量中捕获,从而达到强化深度信息图边缘的效果。通过对ViT和小波变换的引入,能够在不使得网络计算更复杂的前提下,又兼顾单目深度估计网络模型对全局特征和局部边缘特征的提取,提高单目深度估计的精度。

    一种用于矿井巡检机器人的图像立体匹配方法及装置

    公开(公告)号:CN111768437A

    公开(公告)日:2020-10-13

    申请号:CN202010614124.4

    申请日:2020-06-30

    Abstract: 本发明涉及一种用于矿井巡检机器人的图像立体匹配方法及装置,属于立体匹配技术领域,解决了现有图像立体匹配方法对重复纹理区域与弱纹理区域的匹配精度较差的问题。获取物体的左视图和右视图分别作为参考图像和目标图像,对参考图像和目标图像分别进行逐像素邻域替换,得到参考图像和目标图像中每一像素点对应的灰度图;分别获取参考图像和目标图像灰度图对应的二进制码,并基于二进制码计算得到代价量;基于代价量对参考图像和目标图像分别进行匹配代价聚合,得到去除噪声的匹配代价;基于去除噪声的匹配代价,得到物体的视差图,提高了立体匹配的精度和质量。

Patent Agency Ranking