基于注意力的多尺度残差U-Net的海洋中尺度涡旋检测方法

    公开(公告)号:CN118378665B

    公开(公告)日:2024-10-25

    申请号:CN202410817315.9

    申请日:2024-06-24

    Abstract: 本发明公开了基于注意力的多尺度残差U‑Net的海洋中尺度涡旋检测方法,包括以下步骤:(1)获取海平面异常数据SLA,选取海表面温度数据SST,选取基于卫星高度计的海洋涡旋识别追踪数据集;(2)对基于卫星高度计的海洋涡旋识别追踪数据集制作涡旋标签,对海平面异常数据和海表面温度数据进行归一化处理;(3)对得到的归一化结果进行拼接;遍历涡旋标签数据,根据预设的区域对涡旋标签进行数组截取,得到涡旋标签数据集;(4)构建双交叉多尺度特征融合网络模型并进行训练;(5)将测试集输入最优的模型中进行性能测试,得到测试结果,将测试结果与涡旋标签进行对比得到评价指标;本发明提升了检测精度与效率。

    基于注意力的多尺度残差U-Net的海洋中尺度涡旋检测方法

    公开(公告)号:CN118378665A

    公开(公告)日:2024-07-23

    申请号:CN202410817315.9

    申请日:2024-06-24

    Abstract: 本发明公开了基于注意力的多尺度残差U‑Net的海洋中尺度涡旋检测方法,包括以下步骤:(1)获取海平面异常数据SLA,选取海表面温度数据SST,选取基于卫星高度计的海洋涡旋识别追踪数据集;(2)对基于卫星高度计的海洋涡旋识别追踪数据集制作涡旋标签,对海平面异常数据和海表面温度数据进行归一化处理;(3)对得到的归一化结果进行拼接;遍历涡旋标签数据,根据预设的区域对涡旋标签进行数组截取,得到涡旋标签数据集;(4)构建双交叉多尺度特征融合网络模型并进行训练;(5)将测试集输入最优的模型中进行性能测试,得到测试结果,将测试结果与涡旋标签进行对比得到评价指标;本发明提升了检测精度与效率。

Patent Agency Ranking