-
公开(公告)号:CN116206375B
公开(公告)日:2023-07-25
申请号:CN202310474306.X
申请日:2023-04-28
Applicant: 南京信息工程大学
IPC: G06V40/40 , G06V40/16 , G06V10/26 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/0455 , G06N3/047 , G06N3/048 , G06N3/09 , G06N3/088
Abstract: 本发明公开了一种基于双层孪生网络和可持续学习的人脸伪造检测方法,包括步骤:构建用于持续学习策略的图像训练集;通过持续学习策略训练已构建的双层孪生网络,双层孪生网络包括:用于快速学习的有监督子网络,适用于慢速学习的无监督子网络和记忆模块;无监督子网络通过无监督学习提取特征并指导有监督子网络,有监督子网络在无监督子网络的指导下,进行有监督学习提取特征;记忆模块用于巩固学习到的知识;将待检测图像输入到训练好的检测模型,模型对图像进行分割检测,检测出图像中人脸伪造的具体位置。本发明能提高人脸伪造检测模型的准确性,同时实现对具体伪造位置的预测;利用持续学习策略,提升人脸伪造检测模型的泛化性能。
-
公开(公告)号:CN116542839B
公开(公告)日:2023-09-26
申请号:CN202310815859.7
申请日:2023-07-05
Applicant: 南京信息工程大学
IPC: G06T1/00 , G06F21/60 , G06N3/045 , G06N3/0475 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于生成对抗网络的渐进生成式隐写方法,涉及信息安全技术领域,其过程分为三部分:秘密信息映射、秘密图像生成以及秘密信息提取。映射阶段将秘密信息M划分为n段并用映射规则将每一段秘密信息Mi映射为多尺度的噪声图Zi。生成阶段由输入噪声图Z0生成高分辨率的含秘图片。提取阶段接受者用收到的含秘图片下采样至对应生成阶段的多尺度图片并输入提取器Ei以获得噪声图,利用秘密信息到噪声图的逆映射将噪声图恢复为比特流。此外,该方法在生成器和提取器结构中加入密集通道注意力连接。本发明能够实现秘密通信功能。
-
公开(公告)号:CN116542839A
公开(公告)日:2023-08-04
申请号:CN202310815859.7
申请日:2023-07-05
Applicant: 南京信息工程大学
IPC: G06T1/00 , G06F21/60 , G06N3/045 , G06N3/0475 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于生成对抗网络的渐进生成式隐写方法,涉及信息安全技术领域,其过程分为三部分:秘密信息映射、秘密图像生成以及秘密信息提取。映射阶段将秘密信息M划分为n段并用映射规则将每一段秘密信息Mi映射为多尺度的噪声图Zi。生成阶段由输入噪声图Z0生成高分辨率的含秘图片。提取阶段接受者用收到的含秘图片下采样至对应生成阶段的多尺度图片并输入提取器Ei以获得噪声图,利用秘密信息到噪声图的逆映射将噪声图恢复为比特流。此外,该方法在生成器和提取器结构中加入密集通道注意力连接。本发明能够实现秘密通信功能。
-
公开(公告)号:CN116206375A
公开(公告)日:2023-06-02
申请号:CN202310474306.X
申请日:2023-04-28
Applicant: 南京信息工程大学
IPC: G06V40/40 , G06V40/16 , G06V10/26 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/0455 , G06N3/047 , G06N3/048 , G06N3/09 , G06N3/088
Abstract: 本发明公开了一种基于双层孪生网络和可持续学习的人脸伪造检测方法,包括步骤:构建用于持续学习策略的图像训练集;通过持续学习策略训练已构建的双层孪生网络,双层孪生网络包括:用于快速学习的有监督子网络,适用于慢速学习的无监督子网络和记忆模块;无监督子网络通过无监督学习提取特征并指导有监督子网络,有监督子网络在无监督子网络的指导下,进行有监督学习提取特征;记忆模块用于巩固学习到的知识;将待检测图像输入到训练好的检测模型,模型对图像进行分割检测,检测出图像中人脸伪造的具体位置。本发明能提高人脸伪造检测模型的准确性,同时实现对具体伪造位置的预测;利用持续学习策略,提升人脸伪造检测模型的泛化性能。
-
-
-