-
公开(公告)号:CN118822048B
公开(公告)日:2024-12-06
申请号:CN202411305389.0
申请日:2024-09-19
Applicant: 南京信息工程大学
IPC: G06Q10/04 , G06Q50/26 , G06F18/15 , G06F18/213 , G06F18/2431 , G06N3/0455 , G06N3/049 , G06N3/0499 , G06N3/0464 , G06N3/084 , G01W1/10 , G06F123/02
Abstract: 本发明公开了一种前兆因子深度融合的次季节极端降水预测方法,包括:基于优化的损失函数,构建融合数值模式降水预测、历史降水观测以及观测前兆因子的时空变换网络深度学习模型,基于数值模式降水预测数据集、历史降水观测数据集以及观测前兆因子数据集展开模型训练与优化;利用训练好的模型,输入目标时间的数值模式降水预测和前兆因子数据进行预测,输出次季节极端降水预测结果;本发明通过数值模式降水预测、历史降水观测和观测前兆因子数据的深度融合,利用一种新的时空变换网络深度学习方法,显著提高了次季节极端降水预测的准确性和全面性,具有极高的应用价值和广泛的应用前景。
-
公开(公告)号:CN118735082B
公开(公告)日:2024-12-06
申请号:CN202411225933.0
申请日:2024-09-03
Applicant: 南京信息工程大学
IPC: G06Q10/04 , G06N3/04 , G06N3/0464 , G06N3/082 , G06Q50/26
Abstract: 本发明公开了一种基于3D‑TimesNet的次季节气温预报订正方法,包括:采用结合傅里叶变换和卷积神经网络的三维时间块3D‑TimesBlock,构建融合次季节气温预报结果与历史气温数据的3D‑TimesNet神经网络优化模型,并利用次季节气温预报结果数据集和历史气温数据集进行训练;将训练好的模型进行优化加速;利用优化后模型,针对目标时间,输入待订正次季节气温预报结果与历史气温数据,将模式输出数据进行反标准化,得到订正后的目标时间的气温预报结果。本发明能够有效提取气温的周期性变化规律和空间关系,在次季节气温的预报方面具有独特的适用性和显著的优势,推动了气象预报领域的前进。
-
公开(公告)号:CN119128448A
公开(公告)日:2024-12-13
申请号:CN202411607038.5
申请日:2024-11-12
Applicant: 南京信息工程大学 , 南京气象科技创新研究院
IPC: G06F18/20 , G06F18/214 , G06F18/25 , G06N3/0455 , G06N3/0464 , G06N3/096
Abstract: 本发明公开了基于多源模态融合深度学习的高分辨雨情分析生成方法,方法包括:基于与雨情相关的多源数据集,得到多物理量数据集,并建立无量纲化的多模态特征因子库;对损失函数进行多维度非等权处理,构建多尺度空间转换模型MF‑ST‑Unet;模型训练后最终生成逐小时区域高分辨率雨情分析数据集;基于训练好的MF‑ST‑Unet模型,通过迁移学习知识蒸馏,得到应用于覆盖整体区域的高分辨率雨情分析数据集。本发明能够快速有效生成高空间分辨率的均匀网格雨情分析,且较传统方法更加客观、准确;充分考虑雨情的多尺度特征及降水量级的差异,实现高分辨率客观雨情数据获取,提高雨情检测能力和灾害防范精准性,具有极强的应用价值。
-
公开(公告)号:CN118445720A
公开(公告)日:2024-08-06
申请号:CN202410652944.0
申请日:2024-05-24
Applicant: 南京信息工程大学
IPC: G06F18/2431 , G06F18/23213 , G06F18/213 , G06F18/214 , G06F18/22 , G06N3/0464 , G06N3/084 , G01W1/02 , G01W1/10
Abstract: 本发明公开了一种基于神经网络对比学习的极端低温雨雪复合事件的识别方法,包括以下步骤:(1)获取极端低温雨雪复合事件数据集,采集再分析资料;(2)对提取出的复合事件的500hPa环流场和850hPa风场进行降维并聚类分析,得到三类不同环流形势组合的极端低温雨雪复合事件,并对每个事件进行分类标记;(3)利用得到的标签,构建Contrastive Learning需要的正负样本训练集;(4)搭建卷积神经网络的神经网络模型;(5)基于训练集和模型进行训练;(6)基于未标签的再分析数据,对极端低温雨雪复合事件进行识别;本发明通过比较数据点之间的相似性,学习到更具有泛化能力的表示。
-
公开(公告)号:CN118051878B
公开(公告)日:2024-06-11
申请号:CN202410452556.8
申请日:2024-04-16
Applicant: 南京气象科技创新研究院 , 南京信息工程大学
Abstract: 本发明公开了基于多模态融合改进深度学习的极端降水次季节预报方法,包括:对多种气象要素预报数据及预报目标区域的降水观测数据进行预处理;对影响极端降水发生的多模态特征进行自适应标识编码,并生成对应特征向量,形成无量纲化的多模态预报因子库;构建深度残差卷积神经网络优化模型,并分别利用训练集和验证集对模型进行训练和验证优化;采用训练好的模型进行目标区域的极端降水次季节预报。本发明采用了多气象要素因子、多模态融合与改进损失函数的深度学习神经网络模型,对极端降水预报进行了针对性优化,有效把握极端降水的时空分布特征,提高了极端降水的次季节预报能力,具有极强的应用价值。
-
公开(公告)号:CN119128448B
公开(公告)日:2025-03-25
申请号:CN202411607038.5
申请日:2024-11-12
Applicant: 南京信息工程大学 , 南京气象科技创新研究院
IPC: G06F18/20 , G06F18/214 , G06F18/25 , G06N3/0455 , G06N3/0464 , G06N3/096
Abstract: 本发明公开了基于多源模态融合深度学习的高分辨雨情分析生成方法,方法包括:基于与雨情相关的多源数据集,得到多物理量数据集,并建立无量纲化的多模态特征因子库;对损失函数进行多维度非等权处理,构建多尺度空间转换模型MF‑ST‑Unet;模型训练后最终生成逐小时区域高分辨率雨情分析数据集;基于训练好的MF‑ST‑Unet模型,通过迁移学习知识蒸馏,得到应用于覆盖整体区域的高分辨率雨情分析数据集。本发明能够快速有效生成高空间分辨率的均匀网格雨情分析,且较传统方法更加客观、准确;充分考虑雨情的多尺度特征及降水量级的差异,实现高分辨率客观雨情数据获取,提高雨情检测能力和灾害防范精准性,具有极强的应用价值。
-
公开(公告)号:CN118364301B
公开(公告)日:2024-09-27
申请号:CN202410798747.X
申请日:2024-06-20
Applicant: 南京信息工程大学
IPC: G06F18/214 , G06F18/21 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于改进的U‑Net网络的次季节极端高温预测方法,包括以下步骤:(1)选择数值模式和目标区域,获取对极端高温影响的物理因子,构建数据集并进行预处理;(2)构建基于残差模块的U‑Net深度学习模型;(3)对模型进行训练;将处理好的数据按照年份先后分为训练集、验证集与测试集,训练集与验证集随机分批次对网络进行训练;(4)将测试集多因子模式数据输入训练好的模型中得到最终的次季节极端高温预测结果;本发明在U‑Net 网络结构中结合了残差模块,提高了数据利用效率,增强了网络拟合能力,提升了模型学习能力。
-
公开(公告)号:CN118735082A
公开(公告)日:2024-10-01
申请号:CN202411225933.0
申请日:2024-09-03
Applicant: 南京信息工程大学
IPC: G06Q10/04 , G06N3/04 , G06N3/0464 , G06N3/082 , G06Q50/26
Abstract: 本发明公开了一种基于3D‑TimesNet的次季节气温预报订正方法,包括:采用结合傅里叶变换和卷积神经网络的三维时间块3D‑TimesBlock,构建融合次季节气温预报结果与历史气温数据的3D‑TimesNet神经网络优化模型,并利用次季节气温预报结果数据集和历史气温数据集进行训练;将训练好的模型进行优化加速;利用优化后模型,针对目标时间,输入待订正次季节气温预报结果与历史气温数据,将模式输出数据进行反标准化,得到订正后的目标时间的气温预报结果。本发明能够有效提取气温的周期性变化规律和空间关系,在次季节气温的预报方面具有独特的适用性和显著的优势,推动了气象预报领域的前进。
-
公开(公告)号:CN118364301A
公开(公告)日:2024-07-19
申请号:CN202410798747.X
申请日:2024-06-20
Applicant: 南京信息工程大学
IPC: G06F18/214 , G06F18/21 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于改进的U‑Net网络的次季节极端高温预测方法,包括以下步骤:(1)选择数值模式和目标区域,获取对极端高温影响的物理因子,构建数据集并进行预处理;(2)构建基于残差模块的U‑Net深度学习模型;(3)对模型进行训练;将处理好的数据按照年份先后分为训练集、验证集与测试集,训练集与验证集随机分批次对网络进行训练;(4)将测试集多因子模式数据输入训练好的模型中得到最终的次季节极端高温预测结果;本发明在U‑Net网络结构中结合了残差模块,提高了数据利用效率,增强了网络拟合能力,提升了模型学习能力。
-
公开(公告)号:CN118445720B
公开(公告)日:2025-03-18
申请号:CN202410652944.0
申请日:2024-05-24
Applicant: 南京信息工程大学
IPC: G06F18/2431 , G06F18/23213 , G06F18/213 , G06F18/214 , G06F18/22 , G06N3/0464 , G06N3/084 , G01W1/02 , G01W1/10
Abstract: 本发明公开了一种基于神经网络对比学习的极端低温雨雪复合事件的识别方法,包括以下步骤:(1)获取极端低温雨雪复合事件数据集,采集再分析资料;(2)对提取出的复合事件的500hPa环流场和850hPa风场进行降维并聚类分析,得到三类不同环流形势组合的极端低温雨雪复合事件,并对每个事件进行分类标记;(3)利用得到的标签,构建Contrastive Learning需要的正负样本训练集;(4)搭建卷积神经网络的神经网络模型;(5)基于训练集和模型进行训练;(6)基于未标签的再分析数据,对极端低温雨雪复合事件进行识别;本发明通过比较数据点之间的相似性,学习到更具有泛化能力的表示。
-
-
-
-
-
-
-
-
-