-
公开(公告)号:CN118010104B
公开(公告)日:2024-07-02
申请号:CN202410426176.7
申请日:2024-04-10
Applicant: 南京师范大学 , 南京三万物联网科技有限公司
IPC: G01D21/02
Abstract: 本发明公开了一种电气线路老化程度检测方法及系统,实时获取由目标电气线路供电的电力设备的工作参数以及目标电气线路的外观参数;基于电力设备实时的工作参数与标准的工作参数对比,得到目标电气线路的第一老化影响系数;基于目标电气线路实时的外观参数与标准的外观参数对比,得到目标电气线路的第二老化影响系数;第一老化影响系数和第二老化影响系数结合得到综合老化影响系数;基于综合老化影响系数得到目标电气线路的老化程度。通过电气线路上各电力设备的工作参数结合电气线路的外保护层外观情况,对电气线路老化程度进行分析,提高了对电气线路老化检测的准确性,保障了电气线路沿线各电气设备的正常使用,避免了火灾的发生。
-
公开(公告)号:CN118010104A
公开(公告)日:2024-05-10
申请号:CN202410426176.7
申请日:2024-04-10
Applicant: 南京师范大学 , 南京三万物联网科技有限公司
IPC: G01D21/02
Abstract: 本发明公开了一种电气线路老化程度检测方法及系统,实时获取由目标电气线路供电的电力设备的工作参数以及目标电气线路的外观参数;基于电力设备实时的工作参数与标准的工作参数对比,得到目标电气线路的第一老化影响系数;基于目标电气线路实时的外观参数与标准的外观参数对比,得到目标电气线路的第二老化影响系数;第一老化影响系数和第二老化影响系数结合得到综合老化影响系数;基于综合老化影响系数得到目标电气线路的老化程度。通过电气线路上各电力设备的工作参数结合电气线路的外保护层外观情况,对电气线路老化程度进行分析,提高了对电气线路老化检测的准确性,保障了电气线路沿线各电气设备的正常使用,避免了火灾的发生。
-
公开(公告)号:CN117944059B
公开(公告)日:2024-05-31
申请号:CN202410357453.3
申请日:2024-03-27
Applicant: 南京师范大学
IPC: B25J9/16 , G06V20/56 , G06V20/70 , G06V10/25 , G06V10/44 , G06V10/80 , G06V10/764 , G06V10/766 , G06V10/82 , G06T7/73 , G06N3/0464 , G06N3/0495 , G06N3/0455
Abstract: 本发明公开了一种基于视觉及雷达特征融合的轨迹规划方法,获取当前作业环境的视觉图像以及雷达点云,并进行预处理;将视觉图像经主干特征提取网络和图像特征金字塔网络处理得到高级特征图和雷达点云经激光点云特征提取网络处理得到点云特征图进行融合;根据候选框对融合特征后的特征图进行目标检测与识别;利用轻量级优化卷积神经网络对特征图进行语义分割;通过目标识别与语义分割确定识别目标的类别和位置,规划机器人的下一步行进轨迹。采用了高效的神经网络结构,多源传感器数据进行融合,并提供了新的轻量级深度神经网络架构和前景像素判断优化算法,能有效提高图像目标检测识别及语义分割的精度和速度,具有广泛的应用前景。
-
公开(公告)号:CN117944059A
公开(公告)日:2024-04-30
申请号:CN202410357453.3
申请日:2024-03-27
Applicant: 南京师范大学
IPC: B25J9/16 , G06V20/56 , G06V20/70 , G06V10/25 , G06V10/44 , G06V10/80 , G06V10/764 , G06V10/766 , G06V10/82 , G06T7/73 , G06N3/0464 , G06N3/0495 , G06N3/0455
Abstract: 本发明公开了一种基于视觉及雷达特征融合的轨迹规划方法,获取当前作业环境的视觉图像以及雷达点云,并进行预处理;将视觉图像经主干特征提取网络和图像特征金字塔网络处理得到高级特征图和雷达点云经激光点云特征提取网络处理得到点云特征图进行融合;根据候选框对融合特征后的特征图进行目标检测与识别;利用轻量级优化卷积神经网络对特征图进行语义分割;通过目标识别与语义分割确定识别目标的类别和位置,规划机器人的下一步行进轨迹。采用了高效的神经网络结构,多源传感器数据进行融合,并提供了新的轻量级深度神经网络架构和前景像素判断优化算法,能有效提高图像目标检测识别及语义分割的精度和速度,具有广泛的应用前景。
-
-
-
-