-
公开(公告)号:CN110282663B
公开(公告)日:2020-06-02
申请号:CN201910723372.X
申请日:2019-08-06
Applicant: 厦门大学
Abstract: 一种基于同种金属铁离子制备不同维度纳米材料的方法,涉及电化学材料领域,通过不同浓度和比例的金属盐的配比,调控不同的反应溶剂和反应条件,通过简单水热合成的方法控制反应时间和温度,在碳布上制备FeCo2S4的一维、二维、三维基于金属铁离子的硫化物纳米结构,这三类结构形貌规则,具有较大的比表面积,性能稳定,将其作为工作电极材料应用于超级电容器中,表现出优异的电学性能;为硫化物多维结构材料的制备提供普适方法。
-
公开(公告)号:CN108493752B
公开(公告)日:2019-10-25
申请号:CN201810469129.5
申请日:2018-05-16
Applicant: 厦门大学 , 深圳市拉普拉斯能源技术有限公司
Abstract: 本发明涉及一种实现光纤激光器波长调谐的方法,以及波长可调谐的光纤激光器,在稀土掺杂光纤激光器的谐振腔内引入一对偏心的陶瓷插芯光纤接头,并对其中一个陶瓷插芯施加损耗调节装置以旋转陶瓷套筒中的陶瓷插芯光纤接头,改变两个陶瓷插芯光纤接头之间的激光耦合效率,从而调节激光谐振腔内的损耗,最终达到改变输出激光波长的目的。本发明能产生波长连续可调的激光,适用性广,不局限于某个特定的激光波长或某种特定的稀土掺杂增益光纤,并且不改变光纤激光器谐振腔本身的结构,因此有利于实现结构紧凑、操作简单、成本低廉的波长可调谐的光纤激光器。
-
公开(公告)号:CN108305792B
公开(公告)日:2019-07-02
申请号:CN201810078681.1
申请日:2018-01-26
Applicant: 厦门大学
CPC classification number: Y02E60/13
Abstract: 一种硫化物复合纳米薄膜的制备方法,涉及电容器用复合材料。制备Co9S8纳米针状阵列;制备Co9S8‑CuS三维纳米复合结构;制备Co9S8‑MoS2三维纳米复合结构;制备Co9S8‑NiS2三维纳米复合结构。通过不同的浓度和比例的金属盐和硫脲的配比,通过简单水热合成的方法控制反应时间和温度,在碳布上制备Co9S8‑CuS等三维纳米复合结构,制备出多种金属硫化物纳米结构包裹Co9S8纳米针状阵列的三维复合结构,该类结构形貌规则,且具有较大的比表面积,均匀稳定的电学性能,将其作为工作电极材料应用于超级电容器中,表现出优异的电学性能。该方法具有重复性高、操作简单等优点,可大规模生产。
-
公开(公告)号:CN118378517A
公开(公告)日:2024-07-23
申请号:CN202410459521.7
申请日:2024-04-17
Applicant: 厦门大学
IPC: G06F30/27 , G01B11/00 , G01B11/02 , G01B11/24 , G01B11/26 , G01M1/12 , G06F30/17 , G06F18/23213
Abstract: 一种楔形扩张型涡轮叶片气膜孔的几何参数估计方法。通过对楔形体各锥面点云完成分组后,对各组点云进行鲁棒平面拟合,获得楔形体的空间角度信息,进而求出气膜孔楔形扩张口的前倾角和扩张角,即便在外点比例占13.7%和高斯噪声的影响下,所提算法对楔形体点云锥面法矢计算角度误差小于0.01°,比气膜孔轴线角度公差±1°高两个数量级;对锥面到原点距离计算误差小于0.01mm,比气膜孔位置度公差0.1~0.15mm高一个数量级。通过多组仿真气膜孔点云算例,证明算法的高精度和鲁棒性;最后通过气膜孔加工试验件和涡轮叶片实测数据的气膜孔几何参数计算,证明方法的有效性。
-
公开(公告)号:CN106847519B
公开(公告)日:2018-06-26
申请号:CN201710244436.9
申请日:2017-04-14
Applicant: 厦门大学
Abstract: CoS/CuS三维立体纳米复合结构材料的制备方法,涉及纳米复合结构材料。制备CuS种子层:通过磁控溅射CuS靶材的方法在FTO导电玻璃表面溅射一层CuS种子层;制备CoS空心纳米管阵列;制备CoS/CuS三维立体纳米复合结构材料。通过磁控溅射辅助,结合简单水热合成的方法,制备出CuS纳米片包裹CoS空心纳米管的三维复合结构,该种结构形貌规则,且具有大的比表面积。作为对电极材料应用于量子点敏化太阳能电池中,表现出优异的电催化性能。该方法具有重复性高、操作简单等优点,并且结合了物理和化学手段,可大规模生产,为制备新型材料提供了一条新的思路。
-
公开(公告)号:CN106847519A
公开(公告)日:2017-06-13
申请号:CN201710244436.9
申请日:2017-04-14
Applicant: 厦门大学
Abstract: CoS/CuS三维立体纳米复合结构材料的制备方法,涉及纳米复合结构材料。制备CuS种子层:通过磁控溅射CuS靶材的方法在FTO导电玻璃表面溅射一层CuS种子层;制备CoS空心纳米管阵列;制备CoS/CuS三维立体纳米复合结构材料。通过磁控溅射辅助,结合简单水热合成的方法,制备出CuS纳米片包裹CoS空心纳米管的三维复合结构,该种结构形貌规则,且具有大的比表面积。作为对电极材料应用于量子点敏化太阳能电池中,表现出优异的电催化性能。该方法具有重复性高、操作简单等优点,并且结合了物理和化学手段,可大规模生产,为制备新型材料提供了一条新的思路。
-
公开(公告)号:CN110415990B
公开(公告)日:2020-06-05
申请号:CN201910726483.6
申请日:2019-08-07
Applicant: 厦门大学
Abstract: 一种制备镍钴镁硫化物复合纳米结构电极材料的方法,涉及电极活性材料。将六水合氯化镍、六水合氯化钴、六水合氯化镁、脲和氟化铵溶解在去离子水中配制成反应水溶液,将清洗后的不锈钢丝置于盛有该反应水溶液的反应釜中超声,反应后冷却至室温,再用去离子水冲洗,干燥后得到生长复合NiCo2O4和MgO的复合纳米结构的不锈钢丝;将九水合硫化钠溶解在去离子水中配制成硫化钠水溶液,将生长复合NiCo2O4和MgO的复合纳米结构的不锈钢丝放入含有硫化钠水溶液的反应釜中反应,然后冷却至室温,用去离子水冲洗,放入烘箱干燥,即得到NiCo2S4和MgS的镍钴镁硫化物复合纳米结构电极材料。重复性高,操作简单,可大规模生产。
-
公开(公告)号:CN110415990A
公开(公告)日:2019-11-05
申请号:CN201910726483.6
申请日:2019-08-07
Applicant: 厦门大学
Abstract: 一种制备镍钴镁硫化物复合纳米结构电极材料的方法,涉及电极活性材料。将六水合氯化镍、六水合氯化钴、六水合氯化镁、脲和氟化铵溶解在去离子水中配制成反应水溶液,将清洗后的不锈钢丝置于盛有该反应水溶液的反应釜中超声,反应后冷却至室温,再用去离子水冲洗,干燥后得到生长复合NiCo2O4和MgO的复合纳米结构的不锈钢丝;将九水合硫化钠溶解在去离子水中配制成硫化钠水溶液,将生长复合NiCo2O4和MgO的复合纳米结构的不锈钢丝放入含有硫化钠水溶液的反应釜中反应,然后冷却至室温,用去离子水冲洗,放入烘箱干燥,即得到NiCo2S4和MgS的镍钴镁硫化物复合纳米结构电极材料。重复性高,操作简单,可大规模生产。
-
公开(公告)号:CN109100055A
公开(公告)日:2018-12-28
申请号:CN201810982411.3
申请日:2018-08-27
Applicant: 厦门大学
Abstract: 一种硫化物-氧化物复合纳米压力传感器的制备方法,涉及压力传感器。制备三维Co9S8纳米针状阵列;制备Co9S8-NiCo2O4三维纳米复合结构;制备硫化物-氧化物复合纳米压力传感器。制备好的柔性压力传感器用微小拉力仪测试受压时电容参数的变化。制备简单,反应灵敏,为柔性压力传感器在碳布上制备Co9S8-NiCo2O4三维棒针结构,然后将长有Co9S8-NiCo2O4三维棒针结构的碳布用PDMS封装制备压力传感器,该压力传感器制备简单,反应灵敏,为柔性压力传感器的制备提供了一种新型的方法。
-
公开(公告)号:CN108305792A
公开(公告)日:2018-07-20
申请号:CN201810078681.1
申请日:2018-01-26
Applicant: 厦门大学
CPC classification number: Y02E60/13 , H01G11/24 , B82Y30/00 , B82Y40/00 , C01G3/12 , C01G39/06 , C01G51/30 , C01G53/11 , C01P2004/10 , C01P2004/20 , C01P2004/84 , C01P2006/40 , H01G11/30
Abstract: 一种硫化物复合纳米薄膜的制备方法,涉及电容器用复合材料。制备Co9S8纳米针状阵列;制备Co9S8-CuS三维纳米复合结构;制备Co9S8-MoS2三维纳米复合结构;制备Co9S8-NiS2三维纳米复合结构。通过不同的浓度和比例的金属盐和硫脲的配比,通过简单水热合成的方法控制反应时间和温度,在碳布上制备Co9S8-CuS等三维纳米复合结构,制备出多种金属硫化物纳米结构包裹Co9S8纳米针状阵列的三维复合结构,该类结构形貌规则,且具有较大的比表面积,均匀稳定的电学性能,将其作为工作电极材料应用于超级电容器中,表现出优异的电学性能。该方法具有重复性高、操作简单等优点,可大规模生产。
-
-
-
-
-
-
-
-
-