-
公开(公告)号:CN119172160A
公开(公告)日:2024-12-20
申请号:CN202411426471.9
申请日:2024-10-14
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于音频特征的加密流量攻击检测方法、系统及介质,该方法包括:通过五元组划分网络会话流,根据流量字节和音频信号的二进制关系,将网络会话流从流量pcap格式转为音频wav格式;将wav格式文件输入至音频特征提取算法中,计算分帧参数,提取MFCC音频特征;利用MFCC音频特征训练神经网络模型,实现加密流量攻击分类。本发明能避免对网络流量中的关键攻击特征提取不充分或者关键攻击信息缺失的问题,能降低专家知识依赖,支持后续特征提取和攻击检测。
-
公开(公告)号:CN115983379A
公开(公告)日:2023-04-18
申请号:CN202310265601.4
申请日:2023-03-20
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N5/01 , G06N5/02 , G06N3/0464 , G06N3/084
Abstract: 公开了一种MDATA知识图谱的可达路径查询方法及其系统,其首先基于大型网络中的IP关联性构建通信图和实际场景下网络中节点之间的通信关系构建MDATA知识图谱,接着计算MDATA知识图谱的强连通子图和所述强连通子图中心顶点,并以中心顶点为核心构建节点的两跳标签索引,继而基于两条标签索引查询节点间的可达路径以实现快速查询来自不同强连通子图的两个节点的可达性与路径关系。同时,依据存储的事件时间对可达路径进行筛选以过滤掉不符合事件发展顺序的无效路径,从而保存攻击者实际采用的攻击路径和采用的操作,最终能够结合模式匹配的方法依据操作的时序关系和路径分析出攻击者选用的攻击方式从而采取防御措施。
-
公开(公告)号:CN116955539A
公开(公告)日:2023-10-27
申请号:CN202311192177.1
申请日:2023-09-15
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供一种基于思维链推理隐式生成内容合规性判定方法,包括:步骤一:将安全性未知文本X输入大规模语言模型M;步骤二:询问大规模语言模型M安全性未知文本X中的主客体成份,获取主体文本S以及客体文本T;步骤三:询问大规模语言模型M潜在观点,获得潜在观点文本O;步骤四:根据步骤三获得的潜在观点文本O,询问大规模语言模型M安全性未知文本X表达的意图是否符合规范,如果符合规范,输出:安全,否则输出:不安全。本发明的有益效果是:本发明很好的利用大规模语言模型的常识推断能力以及特定领域的专家知识,合理的提示大规模语言模型进行链式推理,逐步地揭示出深层的文本隐藏语义,大幅度提升了系统文本安全检测系统的性能。
-
公开(公告)号:CN115842684B
公开(公告)日:2023-05-12
申请号:CN202310138994.2
申请日:2023-02-21
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40
Abstract: 本申请涉及一种基于MDATA子图匹配的多步攻击检测方法,本申请方法包括:构建预设多步攻击事件的MDATA知识图谱查询图;利用数据查询优化器将MDATA知识图谱查询图分解成若干个子查询图;将若干个子查询图储存至SQM‑Tree辅助的数据结构中,SQM‑Tree辅助的数据结构用于跟踪与合并数据;将若干个子查询图匹配MDATA知识图谱数据图中的多步攻击数据,MDATA知识图谱数据图根据历史告警日志数据和正常系统日志数据创建;输出子查询图与MDATA知识图谱数据图的匹配结果,将匹配结果与SQM‑Tree辅助的数据结构进行对比得到预设多步攻击事件的检测结果,有效提高检测效率。
-
公开(公告)号:CN115842684A
公开(公告)日:2023-03-24
申请号:CN202310138994.2
申请日:2023-02-21
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: H04L9/40
Abstract: 本申请涉及一种基于MDATA子图匹配的多步攻击检测方法,本申请方法包括:构建预设多步攻击事件的MDATA知识图谱查询图;利用数据查询优化器将MDATA知识图谱查询图分解成若干个子查询图;将若干个子查询图储存至SQM‑Tree辅助的数据结构中,SQM‑Tree辅助的数据结构用于跟踪与合并数据;将若干个子查询图匹配MDATA知识图谱数据图中的多步攻击数据,MDATA知识图谱数据图根据历史告警日志数据和正常系统日志数据创建;输出子查询图与MDATA知识图谱数据图的匹配结果,将匹配结果与SQM‑Tree辅助的数据结构进行对比得到预设多步攻击事件的检测结果,有效提高检测效率。
-
公开(公告)号:CN116069955A
公开(公告)日:2023-05-05
申请号:CN202310205496.5
申请日:2023-03-06
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F16/36 , G06F16/387 , G06F16/383 , G06F40/284 , G06F40/295 , G06F40/247
Abstract: 本发明提供了一种基于MDATA模型的时空知识抽取方法,包括以下步骤:步骤1,识别时间和空间知识;通过时间触发词表、空间触发词识别输入序列中的时空知识,并将序列中的时空知识替换为概念代号;步骤2,时空知识的实体关系依赖识别,得到知识五元组;步骤3,时间、空间知识规范化处理。本发明的有益效果是:1.时空信息在文本中有很强的语言特征,本发明方法通过触发词匹配,能高效获取时空信息;2.时空信息是时间表达的关键要素,在知识图谱中,时空信息是同实体、关系紧密联系的,本发明方法通过结合时空信息来进行知识抽取任务,能有效提升知识多元组的质量;3.本发明方法通过规范化处理,能统一时空信息的表达。
-
公开(公告)号:CN118941606B
公开(公告)日:2025-01-07
申请号:CN202411415165.5
申请日:2024-10-11
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种自动驾驶单目深度估计的道路物理域对抗补丁生成方法,形成场景图像数据集;生成目标车辆的掩码图像,目标车辆转换成像素坐标系下的像素坐标,将目标汽车嵌入场景图像中得到目标对象场景图;将道路补丁转换成像素坐标系下的像素坐标;通过场景构造模块得到多个场景图像,得到多方道路补丁视图集;计算深度损失及特征损失,构造目标损失函数;通过目标函数计算由模型输入相应补丁区域大小加权的平均梯度,使用平均梯度作为道路补丁图像的梯度,使用MI‑FGSM的方法更新当前补丁,当达到最大迭代次数时生成最终道路对抗补丁。本发明的方法使得单目深度估计技术更加精准、可靠,鲁棒性更高。
-
公开(公告)号:CN116955539B
公开(公告)日:2023-12-12
申请号:CN202311192177.1
申请日:2023-09-15
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供一种基于思维链推理隐式生成内容合规性判定方法,包括:步骤一:将安全性未知文本X输入大规模语言模型M;步骤二:询问大规模语言模型M安全性未知文本X中的主客体成份,获取主体文本S以及客体文本T;步骤三:询问大规模语言模型M潜在观点,获得潜在观点文本O;步骤四:根据步骤三获得的潜在观点文本O,询问大规模语言模型M安全性未知文本X表达的意图是否符合规范,如果符合规范,输出:安全,否则输出:不安全。本发明的有益效果是:本发明很好的利用大规模语言模型的常识推断能力以及特定领域的专家知识,合理的提示大规模语言模型进行链式推理,逐步地揭示出深层的文本隐藏语义,大幅度提升了系统文本安全检测系统的性能。
-
公开(公告)号:CN115983379B
公开(公告)日:2023-10-10
申请号:CN202310265601.4
申请日:2023-03-20
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N5/01 , G06N5/02 , G06N3/0464 , G06N3/084
Abstract: 公开了一种MDATA知识图谱的可达路径查询方法及其系统,其首先基于大型网络中的IP关联性构建通信图和实际场景下网络中节点之间的通信关系构建MDATA知识图谱,接着计算MDATA知识图谱的强连通子图和所述强连通子图中心顶点,并以中心顶点为核心构建节点的两跳标签索引,继而基于两条标签索引查询节点间的可达路径以实现快速查询来自不同强连通子图的两个节点的可达性与路径关系。同时,依据存储的事件时间对可达路径进行筛选以过滤掉不符合事件发展顺序的无效路径,从而保存攻击者实际采用的攻击路径和采用的操作,最终能够结合模式匹配的方法依据操作的时序关系和路径分析出攻击者选用的攻击方式从而采取防御措施。
-
公开(公告)号:CN119299129A
公开(公告)日:2025-01-10
申请号:CN202411255263.7
申请日:2024-09-09
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 中国电子科技集团公司第五十四研究所
IPC: H04L9/40 , G06F18/214 , G06F18/21 , G06F18/2433 , G06F18/2431 , G06F18/2415
Abstract: 本发明提供了一种用于细粒度多分类的网络入侵开放识别方法、系统及存储介质,网络入侵开放识别方法包括:特征表示步骤:学习一个泛化性的特征表示网络来表征训练和测试样本,从而为后续的分类步骤和拒绝步骤提供支撑;分类步骤:构建分类器,在封闭世界假设中将测试样本分类为已知类别中的某一个类别;拒绝步骤:从训练数据分布中估计可能的簇数,以在开放特征空间学习准确的识别器,从而最小化已知类别样本被错误识别为未知的风险。本发明的有益效果是:1.该网络入侵开放识别方法提高了网络入侵检测在开放世界中的检测准确性;2.该网络入侵开放识别方法具有很好的特征表示能力,能够在分类已知类别样本的同时拒绝那些未知类别的样本。
-
-
-
-
-
-
-
-
-