一种电力信息采集系统运行状态的预测评估方法及装置

    公开(公告)号:CN112884008B

    公开(公告)日:2022-09-09

    申请号:CN202110095638.8

    申请日:2021-01-25

    Abstract: 本发明提出了一种电力信息采集系统运行状态的预测评估方法及装置,所述方法包括:实时采集布置于各个地点的电网数据信息;根据电网实际情况对已有数据以及实时采集的数据进行标注处理,对标注的不同数据赋予不同权重;利用深度残差网络Resnet‑50融合多尺度卷积网络,从标注数据集中提取多尺度用电信息特征;将提取的特征向量输入预测模型,所述预测模型为结合了BiLSTM和Attention网络的模型,输出状态预测及其得分。本发明通过对新旧数据集的权重实时进行调整,利用多尺度的卷积网络分别提取到用电数据浅层深层的特征,预测模型的组合更加关注于对性能提升有用的部分,从而能够对用电信息采集系统的状态进行及时的预测评估,有效保障电力生产安全可靠运行。

    一种基于深度强化学习的软件智能升级方法及装置

    公开(公告)号:CN113031983A

    公开(公告)日:2021-06-25

    申请号:CN202110147585.X

    申请日:2021-02-03

    Abstract: 本发明提出了一种基于深度强化学习的软件智能升级方法及装置。所述方法包括:采集软件运行参数以及用户操作参数,并确定所述软件运行参数以及用户操作参数下软件的基准升级时间点;根据所述软件运行参数以及用户操作参数,利用策略网络给出预测的升级时间点,将预测的升级时间点和所述基准升级时间点的差值作为强化学习的奖励,并将奖励作为策略网络的标签值,通过训练得到训练好的软件智能升级模型;获取软件实时运行参数和用户操作参数,传入训练好的软件智能升级模型,得到当前升级时间点的可信值,并根据可信值判断是否进行升级。本发明基于强化学习和深度学习,实现软件系统的智能升级时机预测,极大地提高软件升级效率。

Patent Agency Ranking