-
公开(公告)号:CN116310591A
公开(公告)日:2023-06-23
申请号:CN202310395993.6
申请日:2023-04-13
Applicant: 复旦大学附属华山医院
IPC: G06V10/764 , G06V10/40 , G06V10/62 , G06V10/771
Abstract: 本发明提供了一种基于脑微结构和动静态功能的疾病分类或预测方法及系统,包括:步骤S1:获取脑多模态磁共振影像,并进行预处理;步骤S2:将对预处理后的数据进行脑功能特征的提取;步骤S3:将提取的特征进行特征筛选;步骤S4:搭建模型,对疾病数据进行预测和分类。本发明通过采用结合脑微结构和动态及静态功能特征信息,解决了单模态图像无法全面表征疾病病理变化的问题,既可用于疾病的分类,也可用于疾病进展的预测;本发明取得了较单模态、单类别特征更优的分类预测效果。
-
公开(公告)号:CN113223699A
公开(公告)日:2021-08-06
申请号:CN202110355578.9
申请日:2021-04-01
Applicant: 复旦大学附属华山医院
IPC: G16H50/20 , G16H30/20 , G06K9/62 , G06N3/04 , G06N3/08 , G06T7/00 , G06T7/11 , G06T7/73 , A61B34/10
Abstract: 本发明提供了一种构建腰椎骨量减少和骨质疏松筛查模型的方法和系统,包括:步骤1:从双平面成像设备中采集影像数据,获取冠、矢状面影像数据及体检信息并进行预处理;步骤2:对冠、矢状面影像进行椎体分割,得到分割结果;步骤3:根据分割结果和体检信息,构成特征集合;步骤4:基于特征集合进行腰椎骨量减少和骨质疏松筛查模型构建。本发明利用常规体检指标及冠、矢状面影像信息,进行腰椎骨量减少和骨质疏松疾病的筛查,在降低辐射量的同时,为今后快速准确地筛查具有高OP疾病风险的人群提供了理论和实践依据,具有很大的实际应用价值。
-
公开(公告)号:CN111681184A
公开(公告)日:2020-09-18
申请号:CN202010523058.X
申请日:2020-06-09
Applicant: 复旦大学附属华山医院
Abstract: 本申请实施例提出了一种神经黑色素图像重建方法、装置、电子设备和计算机存储介质,所述神经黑色素图像重建方法包括:获取QSM序列的N组幅值图像;定所述N组幅值图像中的前M组幅值图像;将所述前M组幅值图像中的每一组幅值图像确定为短回波时间的幅值图像;基于所述M组短回波时间的幅值图像进行图像重建,得到所述N组幅值图像对应的神经黑色素图像。由于该神经黑色素图像的重建方法是通过QSM序列所获得的短回波时间的幅值图像所重建的,可以避免在后续的图像处理流程中进行图像的配准,同时,可以实现通过同一次扫描获取包含NM-MRI序列和QSM两个序列的信息,有利于实际临床检查。
-
公开(公告)号:CN111612762A
公开(公告)日:2020-09-01
申请号:CN202010430630.8
申请日:2020-05-20
Applicant: 复旦大学附属华山医院
Abstract: 本发明提供了一种MRI脑肿瘤图像生成方法及系统,包括:步骤1:构建图像融合对抗生成的GAN网络;步骤2:构建重建图像内容的泊松方程插入算法;步骤3:根据所述图像融合对抗生成的GAN网络和重建图像内容的泊松方程插入算法对输入的3D核磁共振图像进行图像融合生成,将基于GAN网络的MRI图像生成、基于泊松方程编辑MRI融合效果叠加得到最终的图像扩增结果。本发明进行现有样本的数据扩增,增强训练模型的精度和泛化性,为脑肿瘤的诊断、治疗和医生模拟读片训练提供准确的依据。
-
公开(公告)号:CN119027432A
公开(公告)日:2024-11-26
申请号:CN202411064690.7
申请日:2024-08-05
Applicant: 复旦大学附属华山医院
IPC: G06T7/11 , G06T7/00 , G06T7/194 , G06T7/13 , G06V10/764 , G06V10/26 , G06V10/74 , G06V10/44 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/0455
Abstract: 本发明公开了一种基于多尺度上下文建模的前列腺MRI分割方法,其特征在于,包括以下步骤:基于深度学习网络构建前列腺MRI分割模型,利用训练数据集对前列腺MRI分割模型进行训练,部署前列腺MRI分割模型;将实时获得的MRI图像数据输入前列腺MRI分割模型,由前列腺MRI分割模型进行实时推理,获得最终的分割结果。本发明提供了一种多尺度上下文建模模块,该模块通过最小化不相关特征的影响来增强边界像素的表示,从而改善分割结果。此外,本发明还引入了一种先进先出的动态调整机制,优化特征向量的选择,特别是在前列腺的顶端和底端区域。
-
公开(公告)号:CN116468677A
公开(公告)日:2023-07-21
申请号:CN202310325959.1
申请日:2023-03-29
Applicant: 复旦大学附属华山医院
IPC: G06T7/00 , G06V10/764 , G06V10/20 , G06V10/82 , G06N3/08
Abstract: 本发明提供一种基于脑网络和深度学习的MCI转化智能预测方法及系统,包括:步骤S1:获取脑结构磁共振图像数据A,和脑功能磁共振图像数据B;步骤S2:根据脑结构磁共振图像数据A,计算脑结构矩阵;步骤S3:构建脑结构深度学习分类模型;步骤S4:根据脑功能磁共振图像数据B,计算脑静态功能矩阵;步骤S5:构建脑静态功能深度学习分类模型;步骤S6:通过脑静态功能矩阵,计算脑动态功能矩阵;步骤S7:构建脑动态功能深度学习分类模型;步骤S8:构建基于多模态磁共振的深度学习分类模型,输出基于多模态磁共振的统一决策的预测分类结果。本发明能够解决单模态图像无法全面表征疾病发展过程中病理变化的问题。
-
公开(公告)号:CN114187239A
公开(公告)日:2022-03-15
申请号:CN202111397102.8
申请日:2021-11-23
Applicant: 复旦大学附属华山医院
Abstract: 本发明提供了一种结合影像组学和空间分布特征的医学图像分析方法及系统,包括:步骤S1:获取医学图像数据并进行预处理,得到预处理后的医学图像数据;步骤S2:对预处理后的医学图像数据进行目标区域提取,得到目标区域图像;步骤S3:对目标区域图像进行第一图像处理,得到目标区域图的影像组学标签;步骤S4:对目标区域图像进行第二图像处理,得到目标区域图的空间分布标签;步骤S5:利用目标区域的影像组学标签和空间分布标签对机器学习预测模型进行训练,得到训练后的机器学习预测模型;步骤S6:利用训练后的机器学习预测模型得到目标区域的疾病分类信息。
-
公开(公告)号:CN112101523A
公开(公告)日:2020-12-18
申请号:CN202010857268.2
申请日:2020-08-24
Applicant: 复旦大学附属华山医院
Inventor: 耿道颖 , 于泽宽 , 陈泓亦 , 张军 , 尹波 , 李郁欣 , 吴昊 , 曹鑫 , 张海燕 , 胡斌 , 潘嘉炜 , 鲍奕仿 , 周书怡 , 陆怡平 , 耿辰 , 夏威 , 杨丽琴
Abstract: 本发明提供了一种基于深度学习的CBCT图像跨模态预测CTA图像的卒中风险筛查方法和系统,包括:步骤1:构建循环对抗性生成网络模型;步骤2:通过CBCT图像及其对应的造影图像数据训练循环对抗性生成网络模型;步骤3:将测试图像输入至已训练好的循环对抗性生成网络模型,生成血管造影CT图像;步骤4:根据血管造影CT图像中颈动脉的形态、颈动脉狭窄程度及弯曲度预测卒中风险。本发明基于深度学习模型,将非增强CBCT图像转换为增强CT血管造影图像,进行颈动脉血管分割提取,量化计算颈动脉狭窄程度和弯曲度,进而预测脑卒中风险,为临床获取CTA图像及诊断提供了一种便捷、经济、高效的新途径。
-
公开(公告)号:CN111612754A
公开(公告)日:2020-09-01
申请号:CN202010413904.2
申请日:2020-05-15
Applicant: 复旦大学附属华山医院
Abstract: 本发明提供了一种基于多模态图像融合的MRI肿瘤优化分割方法及系统,包括:步骤1:构建MRI肿瘤多模态图像融合的网络;步骤2:构建用于增强肿瘤图像分割的多模态3D网络;步骤3:基于GAN的图像融合,构建显著性损失函数;步骤4:构建Mask注意机制对比度损失函数;步骤5:构建SSIM损失函数;步骤6:根据MRI肿瘤多模态图像融合的网络、多模态3D网络和三个损失函数进行MRI肿瘤优化分割。本发明当训练深层架构时,一个剩余单位会有所帮助;利用递归残差卷积层进行特征积累,为分割任务提供了更好的特征表示;为医学图像分割设计了具有相同网络参数、性能较好的U-NET体系结构。
-
公开(公告)号:CN117218202A
公开(公告)日:2023-12-12
申请号:CN202311414933.0
申请日:2023-10-27
Applicant: 复旦大学附属华山医院
Abstract: 本发明提供了一种基于三维核磁共振足印区空间定位及形态分析方法及系统,包括:步骤S1:获取加权的3D MRI磁共振图像,进行足印区层面重建;步骤S2:获取与足印区平面平行的图像,确定空间定位区;步骤S3:进行足印区勾勒,分割足印区;步骤S4:针对足印区进行空间定位分析和形态分析。本发明通过采用3D MRI重建技术,能准确地在ACL与股骨的附着点紧密相切的斜矢状平面评估ACL股骨足印区,解决了传统2D MRI评估方法中关于ACL股骨足印区形态评估的不准确问题,从而为医生提供了更为准确的ACL股骨足印区形态信息,进而优化ACL重建手术的效果。
-
-
-
-
-
-
-
-
-