-
公开(公告)号:CN114861069A
公开(公告)日:2022-08-05
申请号:CN202210633790.1
申请日:2022-06-07
Applicant: 安徽农业大学
IPC: G06F16/9535 , G06F16/36 , G06F40/30 , G06Q50/20
Abstract: 本发明公开了一种基于知识图谱的网络学习资源分析及个性化推荐方法,属于学习资源分析推荐方法技术领域,具体包括以下步骤:S1、构建网络学习资源知识图谱;S2、网络学习资源分析;S3、学习者画像分析;S4、网络学习资源个性化推荐;本发明融合了学科知识、学习资源、学习策略的个性化教育知识图谱模型及其构建技术,基于知识图谱的学习资源概念链接、分析与评价技术以及知识图谱与学习目标的学习者知识体系评估模型和学习路径智能规划,实现了以学习者个性化兴趣和需求驱动为中心的精准知识推送和个性化学习资源与学习策略推荐。
-
公开(公告)号:CN116778391A
公开(公告)日:2023-09-19
申请号:CN202310828903.8
申请日:2023-07-07
Applicant: 安徽农业大学
IPC: G06V20/40 , G06V10/82 , G06Q50/02 , G06N3/0464 , G06N3/08 , G06N3/0442
Abstract: 本发明公开了一种多模态作物病害表型协同分析模型、装置及模型构建系统,方法包括:构建基于改进CNN和LSTM的作物病害表型文本生成模型,通过组建的多模态训练数据集,对其进行训练;基于改进CNN和LSTM的作物病害表型文本生成模型通过组建的多模态训练数据集,对其进行训练;构建基于查询文本引导和多阶段推理的视觉语言定位模型(MQVL)通过组建的多模态训练数据集,对其进行训练;构建基于CNN‑Transformer双流多模态少样本识别模型(CTMF)通过组建的多模态训练数据集,对其进行训练。
-
公开(公告)号:CN114861069B
公开(公告)日:2024-12-06
申请号:CN202210633790.1
申请日:2022-06-07
Applicant: 安徽农业大学
IPC: G06F16/9535 , G06F16/36 , G06F40/30 , G06Q50/20
Abstract: 本发明公开了一种基于知识图谱的网络学习资源分析及个性化推荐方法,属于学习资源分析推荐方法技术领域,具体包括以下步骤:S1、构建网络学习资源知识图谱;S2、网络学习资源分析;S3、学习者画像分析;S4、网络学习资源个性化推荐;本发明融合了学科知识、学习资源、学习策略的个性化教育知识图谱模型及其构建技术,基于知识图谱的学习资源概念链接、分析与评价技术以及知识图谱与学习目标的学习者知识体系评估模型和学习路径智能规划,实现了以学习者个性化兴趣和需求驱动为中心的精准知识推送和个性化学习资源与学习策略推荐。
-
公开(公告)号:CN115937689B
公开(公告)日:2023-08-11
申请号:CN202211721125.4
申请日:2022-12-30
Applicant: 安徽农业大学
Abstract: 本发明涉及人工智能技术领域,且公开了一种农业害虫智能识别与监测技术,通过利用公开知识图谱和私有数据构建多模态农业病虫害知识图谱,收集多类别害虫图片作为训练数据,并对数据进行预处理,利用训练数据训练一个卷积视觉模型和一个视觉注意力模型,然后将训练完成的模型保存,冻结模型后,使用融合模块融合两个模型,利用多模态知识图谱推理出输入害虫图片的相关粗粒度的属性特征,利用编码器对推理的属性特征进行编码。该农业害虫智能识别与监测技术,可以利用粗粒度多模态知识图谱辅助混合视觉模型对害虫进行识别和监测,提高了对害虫种类的识别准确度。
-
公开(公告)号:CN115937689A
公开(公告)日:2023-04-07
申请号:CN202211721125.4
申请日:2022-12-30
Applicant: 安徽农业大学
Abstract: 本发明涉及人工智能技术领域,且公开了一种农业害虫智能识别与监测技术,通过利用公开知识图谱和私有数据构建多模态农业病虫害知识图谱,收集多类别害虫图片作为训练数据,并对数据进行预处理,利用训练数据训练一个卷积视觉模型和一个视觉注意力模型,然后将训练完成的模型保存,冻结模型后,使用融合模块融合两个模型,利用多模态知识图谱推理出输入害虫图片的相关粗粒度的属性特征,利用编码器对推理的属性特征进行编码。该农业害虫智能识别与监测技术,可以利用粗粒度多模态知识图谱辅助混合视觉模型对害虫进行识别和监测,提高了对害虫种类的识别准确度。
-
-
-
-