-
公开(公告)号:CN119295702A
公开(公告)日:2025-01-10
申请号:CN202411439990.9
申请日:2024-10-15
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06T17/20 , G06V10/40 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/0455 , G06N3/0495
Abstract: 本发明提出基于深度3D可变形模型的3D网格重构方法及系统,涉及3D网格重构技术领域。包括将3D网格数据输入至深度3D可变形模型的编码器,利用跳步部分注意力螺旋卷积对3D网格数据进行编码,得到特征向量;将特征向量输入至深度3D可变形模型的解码器中,分别进行基于注意力的邻域选择和聚合权重解耦的非局部空间特征聚合、以及进行基于螺旋邻域的空间特征聚合,并基于多头注意力再次进行空间特征聚合,得到聚合结果;将聚合结果输入至部分注意力螺旋卷积中,得到重构的3D网格。本发明使用跳步螺旋卷积实现了模型的轻量化,提出的特征聚合方法只在训练中学习权重聚合矩阵,在推理阶段无需额外的成本。