一种融合视觉与光谱显著性的高光谱药液异物检测方法

    公开(公告)号:CN116129140A

    公开(公告)日:2023-05-16

    申请号:CN202310079997.3

    申请日:2023-02-08

    Applicant: 湖南大学

    Abstract: 本发明公开了一种融合视觉与光谱显著性的高光谱药液异物检测方法,拍摄待检测药液的高光谱原始图像,并构建高光谱图像样本集;采用基于信息熵的排序波段选择方法从高光谱图像样本中选出预设数量的波段,将其转换为伪彩图像;对伪彩图像进行直方图对比度计算和梯度特征提取,并进行特征融合,得到基于视觉的显著性特征图,经过总变分滤波,得到初步异常检测图;对待检测药液的高光谱图像分别计算光谱角距离与光谱欧式距离并进行融合,得到光谱显著性特征图;采用光谱显著性特征图抑制初步异常检测图的背景信息,得到异物检测图,实现待检测药液的异物检测。该方法可以快速、准确地检测出药液成品中的微弱异物,实现对药液的无损检测与质量控制。

    一种医药高光谱数据的图像重构方法

    公开(公告)号:CN114092509A

    公开(公告)日:2022-02-25

    申请号:CN202111341858.0

    申请日:2021-11-12

    Applicant: 湖南大学

    Abstract: 本发明公开了一种医药高光谱数据的图像重构方法,在通过高光谱相机获取到医药高光谱数据后,首先采用数据预处理的方法,对采集的原始数据进行筛选和裁剪,预处理部分为数据集的建立提供了保障,在保留医药产品特性和对比度的同时,极大程度去除托盘背景部分的干扰;其次,通过构建的卷积自编码器,学习医药高光谱的非线性表示,最后通过求解全局非线性最优化问题,通过保真度先验,将学习到的非线性表示的保真度和空间域梯度的稀疏性统一起来,从编码后的图像重构出高光谱图像。本发明显然能够提升重构准确率,提高信噪比,降低硬件设备存储压力。

    一种基于快照式编码成像系统的医药高光谱重构方法

    公开(公告)号:CN115994983A

    公开(公告)日:2023-04-21

    申请号:CN202310298901.2

    申请日:2023-03-24

    Applicant: 湖南大学

    Abstract: 本发明公开了一种基于快照式编码成像系统的医药高光谱重构方法,采集医药高光谱原始图像并处理,得到增强后的医药高光谱图像,经过模拟空间编码,获得编码后的测量图像,对编码后的测量图像进行光谱反移位后作反向编码处理,得到反向编码后的三维高光谱图像,将增强后的医药高光谱图像作为目标图像,根据反编码后的测量图像和目标图像构建训练集和测试集;搭建深度对称神经重构网络,并通过训练集和测试集进行训练和测试;将测试后的深度对称神经重构网络部署到快照式编码成像系统,利用快照式编码成像系统实时采集得到医药测量图像,经过计算重构,得到重构的三维高光谱图像。该方法能够实现对快照式成像系统医药高光谱的高质量重构。

Patent Agency Ranking