-
公开(公告)号:CN118862950B
公开(公告)日:2025-03-07
申请号:CN202411364712.1
申请日:2024-09-29
Applicant: 烟台大学
IPC: G06N3/042 , G06N3/0464 , G06N3/045 , G06F18/20
Abstract: 本发明涉及故障诊断技术领域,尤其是涉及一种基于图结构联合优化的工业设备故障诊断方法及系统。方法包括获取原始设备数据集;根据原始设备数据集构建原始图结构;基于原始图结构提取两个基本视图,利用GCN计算基本视图的图节点嵌入,基于图节点嵌入重新计算图结构中边的概率;基于图结构中边的概率进行视图融合,得到初步优化后的视图;通过GAT网络处理融合视图,得到增强视图;本发明优化了传统故障诊断中遇到的预测精准度低和鲁棒性差等问题,从而显著提升了工业互联网设备的稳定性。
-
公开(公告)号:CN119676094A
公开(公告)日:2025-03-21
申请号:CN202510185592.7
申请日:2025-02-20
Applicant: 烟台大学
IPC: H04L41/12 , H04L41/142 , H04L41/16 , H04L41/0631 , H04L67/12 , G06N3/04 , G06N3/08 , G06N5/022
Abstract: 本发明涉及工业物联网检测技术领域,尤其是涉及一种基于联邦图神经网络工业物联网设备检测方法及系统。所述方法,包括获取每个设备的实时运行状态数据和传感器的测量值,利用输入数据作为设备节点特征构建拓扑图,并基于拓扑图引入知识图谱,将客户端设备状态与知识图谱信息进行融合,引入注意力机制对客户端本地模型的权重进行自适应调整;基于融合后的节点特征进行特征增强,建立基于强化学习的联邦图神经网络客户端动态调度策略,利用全局模型进行图结构数据的节点分类任务,本发明基于融合后的节点特征进行特征增强、引入投影头和计算对比损失,提升了模型在缺乏标注数据下的性能,使模型学习到更稳健特征,增强了对设备故障的判断准确性。
-
公开(公告)号:CN118713938A
公开(公告)日:2024-09-27
申请号:CN202411203462.3
申请日:2024-08-30
Applicant: 烟台大学
IPC: H04L9/40 , G06F18/2433 , G06F18/25
Abstract: 本发明涉及异常节点检测技术领域,尤其是涉及一种基于异质图的工业互联网异常节点检测方法及系统。所述方法包括:对新的图结构进行不同类型节点的特征映射;基于自注意力机制对新的图结构进行计算得到节点嵌入向量;基于语义级的注意力机制学习元路径的重要性,通过融合节点嵌入向量得到最终的融合嵌入向量;对节点的融合嵌入向量进行分类,以检测工业互联网中的异常节点。在本发明中,将工业互联网看作异质图神经网络,引入机器学习和图神经网络框架,结合利用图结构学习算法、图注意力网络、元路径等一系列技术,实现对工业互联网中的异常节点进行准确、高效识别和监控。
-
公开(公告)号:CN118862950A
公开(公告)日:2024-10-29
申请号:CN202411364712.1
申请日:2024-09-29
Applicant: 烟台大学
IPC: G06N3/042 , G06N3/0464 , G06N3/045 , G06F18/20
Abstract: 本发明涉及故障诊断技术领域,尤其是涉及一种基于图结构联合优化的工业设备故障诊断方法及系统。方法包括获取原始设备数据集;根据原始设备数据集构建原始图结构;基于原始图结构提取两个基本视图,利用GCN计算基本视图的图节点嵌入,基于图节点嵌入重新计算图结构中边的概率;基于图结构中边的概率进行视图融合,得到初步优化后的视图;通过GAT网络处理融合视图,得到增强视图;本发明优化了传统故障诊断中遇到的预测精准度低和鲁棒性差等问题,从而显著提升了工业互联网设备的稳定性。
-
-
-