Abstract:
A diesel fuel additive package, diesel fuel containing the additive and methods for operating an engine on the diesel fuel and additive. The fuel additive includes a reaction product of (a) a hydrocarbyl substituted dicarboxylic acid or anhydride, and (b) an amine compound or salt thereof of the formula wherein R is selected from hydrogen and a hydrocarbyl group containing from about 1 to about 15 carbon atoms, and R1 is selected from hydrogen and a hydrocarbyl group containing from about 1 to about 20 carbon atoms. The reaction product contains at least one amino triazole group. Component (2) of the additive is a hydrocarbyl succinimide dispersant. The additive also includes (3) a C2 to C10 alkyl alcohol; and (4) optionally, a lubricity additive. In the additive, a weight ratio of component (1) to component (2) in the fuel ranges from about 1:3 to about 1:5.
Abstract:
The present invention relates to methods of improving the low temperature storage and performance properties of fatty acids and/or derivatives thereof, as well as compositions containing fatty acids and/or derivatives thereof having superior lower temperature storage and performance properties.
Abstract:
The invention relates to dispersions comprising I) at least one polymer that is effective for mineral oils as a cold extrusion improver and is soluble in oil, II) at least one organic solvent that cannot be mixed with water, III) water, IV) at least one alkanolamine salt of a polycyclic carboxylic acid as a dispersing agent, and V) possibly at least one organic solvent that can be mixed with water.
Abstract:
The use of mixtures of (A) aliphatic saturated or unsaturated monocarboxylic acids having 12 to 24 carbon atoms or the dimerization or trimerization products thereof, which may be present in the form of free carboxylic acids and/or in the form of ammonium salts, amides, esters and/or nitriles, and (B) polycyclic hydrocarbon compounds which are obtainable from distillation residues of natural oils, which have been extracted from tree resins, for increasing the cetane number of fuel oils which comprise at least one additive with detergent action and at least one cetane number improver, the mixtures of components (A) and (B) being used in a concentration of 10 to 500 ppm by weight, based on the total amount of the fuel oil.
Abstract:
A subject of the present invention is an anti-corrosive and antistatic lubricating composition for a hydrocarbonated mixture comprising: a) at least a compound A of Formula (I) below: in which R1 and R2 are hydrogen or a linear or branched alkyl group of 1-40 carbon atoms, comprising possibly one to five double bond(s), R1 and R2 together being able to form an aromatic or aliphatic ring of 5-6 carbon atoms, said ring being capable of substitution by one to three linear or branched alkyl group(s) of 1-40 carbon atoms, in which R1 and R2 cannot be hydrogen at the same time, and in which R3 and R4, identical or different, are chosen from the OH groups, in which R3 and R4 cannot be the OH group at the same time, or deriving from a linear or branched monol or polyol group containing 1-20 carbon atoms having a functionality of 2 to 5 inclusive; b) and at least one B compound corresponding to a fatty acid of 16-24 carbon atoms, unsaturated or not, optionally in a mixture with a carboxylic acid comprising at least one aromatic and/or olefinic polycycle or ring and/or their ester, amide or corresponding amine salts derivatives, taken alone or in a mixture.
Abstract:
The present invention relates to a fatty acid composition which contains an effective amount of fatty acids providing improved low temperature stability of the composition. The present invention also relates to a process for producing a fatty acid composition wherein the process comprises the steps of selecting a crude tall oil having a fatty acid concentration and type capable of providing low temperature stability, distilling said crude tall oil to provide a fatty acid composition containing an effective amount of tall oil fatty acids providing low temperature stability. The fatty acid composition of the present invention is used as a fuel additive
Abstract:
Diesel or lean-burn engines which are fitted with an exhaust system provided with a particle filter are supplied with a fuel containing an additive capable of lowering the temperature at which the soot particles trapped by the particle filter can be burned and which essentially consists of an iron compound or essentially consists of an iron compound and of a cerium compound, and wherein the particle filter through which the exhaust gases produced by the combustion of the fuel in the engine pass is a catalytic filter in which the catalyst assists with the combustion of the soot particles; this improves soot combustion dynamics, particularly at low temperatures.
Abstract:
The present invention relates to methods of improving the low temperature storage and performance properties of fatty acids and/or derivatives thereof, as well as compositions containing fatty acids and/or derivatives thereof having superior lower temperature storage and performance properties.
Abstract:
The invention relates to dispersions comprising I) at least one polymer that is effective for mineral oils as a cold extrusion improver and is soluble in oil, II) at least one organic solvent that cannot be mixed with water, III) water, IV) at least one alkanolamine salt of a polycyclic carboxylic acid as a dispersing agent, and V) possibly at least one organic solvent that can be mixed with water.
Abstract:
The use of mixtures of (A) aliphatic saturated or unsaturated monocarboxylic acids having from 12 to 24 carbon atoms or their dimerization or trimerization products, or their ammonium salts, amides, esters or nitrites, and (B) polycyclic hydrocarbon compounds which are obtainable from distillation residues of natural oils which have been extracted from tree resins for improving the storage stability of fuel additive concentrates which comprise at least one detergent and at least one cetane number improver, the mixtures of components (A) and (B) being used in a concentration of from 0.7 to 20% by weight based on the total amount of the fuel additive concentrate.