Abstract:
The invention is directed to crosslinked water-soluble swellable polymers, methods for making same and their various uses. More particularly, the invention relates to a composition comprising expandable polymeric particles being made with 0.1-5% hydrophobic monomers and labile crosslinkers and stable crosslinkers, said particles mixed with a fluid. A particularly important use is as an injection fluid in petroleum production, where the expandable polymeric particles are injected into a well and when the heat and/or pH of the target zones in the formation cause degradation of the labile crosslinker and when the particle expands, the hydrophobic groups associate to form a hydrophobically associative polymer, thus diverting water to lower permeability regions and improving oil recovery.
Abstract:
A process for making a resin emulsion suitable for use in forming toner particles is provided. In embodiments, a suitable process includes melt mixing a resin in the absence of an organic solvent, optionally adding a surfactant to the resin, adding to the resin a basic agent and water, and subjecting the resin, basic agent and water to acoustic mixing at a suitable frequency to form an emulsion of resin particles. In embodiments, the resin emulsion thus produced may be utilized to form a toner.
Abstract:
A flash memory controller having a flash memory testing functions is provided, in which the flash memory controller includes a microprocessor unit, a flash memory interface unit, a host interface unit and a memory cell testing unit. The flash memory interface unit is configured for connecting a plurality of flash memory chips, where each flash memory chip has a plurality of flash memory dies and each flash memory die has a plurality of physical blocks. The host interface unit is configured for connecting a host system. The memory cell testing unit is configured for determining whether the physical blocks can be normally written, read and erased. Accordingly, the flash memory controller can perform a flash memory testing under a command of the host system and all the physical blocks of the flash memory chip can be tested during the flash memory testing.
Abstract:
The present invention relates to novel therapeutic and diagnostic dendrimer based modular platforms (e.g., drug delivery platforms). In particular, the dendrimer based modular platforms are configured such that two or more dendrimers (e.g., PAMAM dendrimers) are coupled together (e.g., via a cycloaddition reaction) wherein each of the coupled dendrimers is functionalized (e.g., functionalized for targeting, imaging, sensing, and/or providing a therapeutic or diagnostic material and/or monitoring response to therapy). In some embodiments, the present invention provides dendrimer based modular platforms having coupled dendrimers (e.g., two or more coupled dendrimers) wherein each dendrimer is conjugated to one or more functional groups (e.g., therapeutic agent, imaging agent, targeting agent, triggering agent) (e.g., for specific targeting and/or therapeutic use of the dendrimer based modular platform). In some embodiments, the functional groups are conjugated to the dendrimers via a linker and/or a triggering agent. In addition, the present invention is directed to methods of synthesizing dendrimer based modular platforms, compositions comprising the dendrimer based modular platforms, as well as systems and methods utilizing the dendrimer based modular platforms (e.g., in diagnostic and/or therapeutic settings (e.g., for the delivery of therapeutics, imaging, and/or targeting agents (e.g., in disease (e.g., cancer) diagnosis and/or therapy, etc.)).
Abstract:
The present invention provides an enzyme composition and a method for treating coal using the enzyme composition. The enzyme composition includes at least one enzyme, coenzyme and ammonium acetate, wherein the enzyme can be laccase-isozyme, pyruvate dehydrogenase, dihydrolipoyl transacetylase, and dihydrolipoyl dehydrogenase, and the coenzyme can be CoA, CoA-SH, thiamine pyrophosphate, lipoic acid, flavin adenine dinucleotide, and nicotinamide adenine dinucleotide. In addition, the method of the present invention includes treating the coal with the enzyme composition for more than 72 hours.
Abstract:
A process for preparing a toner includes mixing a polymeric resin emulsion, a colorant dispersion, and a wax to form a mixture; optionally adding a coagulant to the mixture; heating the mixture at a temperature below a glass transition temperature of the polymeric resin to aggregate the polymeric resin, colorant, and wax, to form aggregated particles; adding a coalescent agent to the aggregated particles; heating the aggregated particles and coalescent agent at a temperature above the glass transition temperature of the polymeric resin, to coalesce the aggregated particles to form toner particles, optionally cooling the mixture, and isolating the tone particles.
Abstract:
A method for accessing the physical memory with an operating system, providing for mapping the physical address to the linear address of the memory in the operating system. Thus to access the user-space of the memory with an operating system is practically to read and write data in the kernel-space of the memory to achieve quick access of the physical memory.
Abstract:
Polymeric microcarriers suitable for use in cell culture processes and the methods of making such polymeric microcarriers by emulsion/aggregation polymerization processes.
Abstract:
Imaging members useful in electrostatographic apparatuses, including printers, copiers, other reproductive devices, and digital apparatuses. More particularly, imaging members having nano-sized particles serving as fillers dispersed or contained in one or more layers of the imaging member that provide for increased mechanical strength and improved wear.
Abstract:
An exemplary liquid crystal panel (100) includes a first substrate (110), a second substrate (120) opposite to the first substrate, a liquid crystal layer (130) sandwiched between the first and second substrates, a plurality of drive integrated circuits (ICs) (114), and a plurality of anisotropic conductive film (ACF) units (115). The first substrate includes a source bonding region (117) and a gate bonding region (118) at the periphery thereof. Each of the source bonding region and the gate bonding region includes a plurality of connecting regions and a plurality of spacing regions each between two connecting regions. The ACF units are disposed on the connecting regions of the source bonding region and the gate bonding region, and are configured for bonding the drive ICs onto the first substrate.