Abstract:
A substrate processing apparatus performs: a pressure raising process of raising a pressure within the processing container to a processing pressure higher than a critical pressure of the processing fluid, after the substrate is accommodated in the processing container; and a circulation process of supplying the processing fluid to the processing container and discharging the processing fluid from the processing container while keeping a pressure at which the processing fluid is maintained in the supercritical state, within the processing container. In the pressure raising process, the supply of the processing fluid from the second fluid supply unit is stopped and the processing fluid is supplied from the first fluid supply unit into the processing container until at least the pressure within the processing container reaches the critical pressure. In the circulation process, the processing fluid is supplied into the processing container from the second fluid supply unit.
Abstract:
The invention relates to a multi-chamber with ultra-high-pressure or hydraulic motor compressors or motor pumps for compressing gas or liquid at ultra-high pressure, formed by several different-sized concentric chambers, wherein each chamber contains smaller chambers, there being installed between the chambers motors or pumps that enable fluid to be introduced into the inner chambers at increasingly greater pressure.
Abstract:
A method for leaching a PCD table for a cutter element includes (a) positioning a PCD table within a leaching chamber. The method also includes (b) submerging the PCD table in an acid within the leaching chamber. In addition, the method includes (c) sealing the leaching chamber. Further, the method includes (d) increasing the pressure within the leaching chamber to a pressure greater than or equal to 20,000 psi after (c).
Abstract:
A method for increasing the ZT of a semiconductor, involves creating a reaction cell including a semiconductor in a pressure-transmitting medium, exposing the reaction cell to elevated pressure and elevated temperature for a time sufficient to increase the ZT of the semiconductor, and recovering the semiconductor with an increased ZT.
Abstract:
A polycrystalline compact comprises a plurality of grains of hard material and a plurality of nanoparticles disposed in interstitial spaces between the plurality of grains of hard material. The nanoparticles have cores of a first material and at least one oxide material on the cores. An earth-boring tool comprises such a polycrystalline compact. A method of forming a polycrystalline compact comprises combining a plurality of hard particles with a plurality of nanoparticles to form a mixture and sintering the mixture to form a polycrystalline hard material comprising a plurality of interbonded grains of hard material. A method of forming a cutting element comprises infiltrating interstitial spaces between interbonded grains of hard material in a polycrystalline material with a plurality of nanoparticles.
Abstract:
PCD materials comprise a diamond body having bonded diamond crystals and interstitial regions disposed among the crystals. The diamond body is formed from diamond grains and a catalyst material at high pressure/high temperature conditions. The diamond grains have an average particle size of about 0.03 mm or greater. At least a portion of the diamond body has a high diamond volume content of greater than about 93 percent by volume. The entire diamond body can comprise high volume content diamond or a region of the diamond body can comprise the high volume content diamond. The diamond body includes a working surface, a first region substantially free of the catalyst material, and a second region that includes the catalyst material. At least a portion of the first region extends from the working surface to depth of from about 0.01 to about 0.1 mm.
Abstract:
A press, an automated loading system for a press and related methods are provided including a loading system having a first assembly configured to carry a reaction cell to an anvil of a press base and a second assembly configured to assist in positioning and orientating the reaction cell on the anvil. In one embodiment, the first assembly may include a trolley displaceable along a guide member to carry the reaction cell to the anvil. The first and second assemblies may each include guide members that are displaceable relative to the anvil that are configured to position the reaction cell at a desired location and orientation on the anvil. In one embodiment, each of the guide members include arms that engage distinct sides of a cubic reaction cell. A clearing mechanism may also be incorporated to clear the surface of the anvil during operation of the system.
Abstract:
A polycrystalline diamond compact made from a high pressure, high temperature process is provided. The compact includes a metal carbide substrate including a binder and at least one inner layer of polycrystalline diamond disposed on the substrate. The polycrystalline diamond has a diamond phase and a metal phase forming an interconnected mutually exclusive network. The metal phase is a material different than that of the binder of the substrate to provide improved diamond sintering and final polycrystalline diamond compact properties. Prior to processing at least one coating is disposed on the substrate, and the layer of diamond particles is disposed on the at least one coating. During the high pressure, high temperature process the coating melts and fully sweeps into the diamond layer.
Abstract:
Methods for removing, or leaching, cobalt or other diamond-diamond bonding catalysts from polycrystalline diamond compacts (PDCs) or other structures formed from polycrystalline diamond include leaching under conditions that simulate use of PDCs in a hot hole drilling environment. A leaching agent may be formulated, when used under appropriate conditions, to remove or substantially remove cobalt or another catalyst from polycrystalline diamond without dissolving, degrading or otherwise attacking a substrate that supports or carries the polycrystalline diamond. The leaching agent may include one or more components that mimick the chemicals or conditions to which a PDC would be exposed in a hot hole drilling environment. Polycrystalline diamond structures from which cobalt or another diamond-diamond bonding catalyst has been removed or substantially removed are also disclosed, as are systems for leaching cobalt or other diamond-diamond bonding catalysts from polycrystalline diamond.
Abstract:
An apparatus and method for processing materials in supercritical fluids is disclosed. The apparatus includes a capsule configured to contain a supercritical fluid, a high strength enclosure disposed about the capsule and a sensor configured to sense pressure difference between an interior and an exterior of the capsule. The apparatus also includes a pressure control device configured to adjust pressure difference of the capsule in response to the pressure difference sensed by the sensor. The apparatus further includes at least one dividing structure disposed within the capsule that divides the capsule into a seed growing chamber and a nutrient chamber.