Abstract:
A device for separating a sample of cells suspended in a bio-compatible ferrofluid is described, The device includes a microfluidic channel having a sample inlet, at least one outlet and a length between the same inlet and the at least one outlet, wherein a sample can be added to the sample inlet and flow along the microfluidic channel length to the at least one outlet. The device includes a plurality of electrodes and a power source for applying a current to the plurality of electrodes to create a magnetic field pattern along the microfluidic channel length. The present invention also includes a method of using said device for separating at least one cell type.
Abstract:
A concentration of HC in an exhaust gas is estimated with a high degree of accuracy by making use of a particulate matter processing apparatus (1). In the particulate matter processing apparatus (1) in which a processing part (3) with an electrode (5) installed therein is arranged in an exhaust passage (2) of an internal combustion engine, wherein particulate matter is caused to aggregate by generating a potential difference between the electrode (5) and the processing part (3), provision is made for a power supply (6) that is connected to the electrode (5) and applies a voltage thereto, an insulation part (4) that insulates electricity between the processing part (3) and the exhaust passage (2), and a ground part (53) that grounds the processing part (3), a detection device (9) that detects an electric current in the ground part (53), and an estimation device (7) that estimates a concentration of HC in an exhaust gas based on the electric current detected by the detection device (9) at the time when the voltage is applied to the electrode (5) by means of the power supply (6).
Abstract:
There is provided a particle detector that detects biogenic particles with high sensitivity. The particle detector includes a collecting member having a principal surface and configured to electrostatically collect particles on the principal surface, an irradiation unit configured to irradiate the particles collected on the principal surface with excitation light, a light receiving unit configured to receive fluorescence emitted from the particles by irradiation of the particles with the excitation light, and a detection unit configured to detect biogenic particles from the particles collected on the principal surface on the basis of a fluorescence intensity in the light receiving unit. The particle detector further includes a filter disposed between the principal surface and the light receiving unit cut light with a wavelength emitted by irradiation of the excitation light from a substance that is generated on the principal surface when the particles are electrostatically collected.
Abstract:
A high temperature high pressure electrostatic treater and method of use are described for removing water from heavy crude oil. The electrostatic treater is comprised of a vessel with a wet bitumen inlet and water outlet in the upper portion of the vessel, a dry bitumen outlet in the lower portion of the vessel, a plurality of electrodes on an electrically isolating support inside the vessel, an entrance bushing, and an interface control to regulate the flow of water through the water outlet. The water outlet is located above the dry bitumen outlet. The electrostatic treater and method reduce the amount of diluent needed to process the heavy crude when compared to the prior art.
Abstract:
An excessively large electric current is suppressed from flowing to an electrode. Provision is made for an electrode arranged in an exhaust passage of an internal combustion engine, a power supply connected to the electrode for applying a voltage thereto, an air fuel ratio detection device for detecting or estimating an air fuel ratio of an exhaust gas which flows through the exhaust passage, and a power upper limit setting device for setting an upper limit for electric power supplied to the electrode from the power supply in cases where the air fuel ratio detected or estimate.
Abstract:
Aggregation of particulate matter is facilitated. Provision is made for an electrode that is arranged in an exhaust passage of an internal combustion engine with a voltage to be applied thereto being able to be changed, a detection device that detects an electric current passing through the electrode, a determination device that determines whether a pulse current has been generated in the electric current detected by the detection device, and a control device that reduces the voltage to be applied more than that at this time in cases where a determination has been made by the determination device that a pulse current has been generated.
Abstract:
An excessively large electric current is suppressed from flowing to an electrode. A particulate matter processing apparatus in which a processing part with an electrode installed therein is arranged in an exhaust passage of an internal combustion engine, wherein particulate matter is caused to aggregate by generating a potential difference between the electrode and the processing part, is provided with a power supply that is connected to the electrode and applies a voltage thereto, a current detection device that detects an electric current which passes through the electrode, an air fuel ratio detection device that detects or estimates an air fuel ratio of an exhaust gas which flows through the exhaust passage, and a voltage control device that makes the voltage applied to the electrode from the power supply smaller in cases where the air fuel ratio detected by the air fuel ratio detection device is a rich air fuel ratio, than in cases where it is a stoichiometric air fuel ratio or a lean air fuel ratio.
Abstract:
The method of modeling fly ash collection efficiency in wire-duct electrostatic precipitators provides for the optimization of fly ash collection through the generation of numerical solutions to the electrostatic and electrodynamic equations associated with the particular geometry of the wire-duct electrostatic precipitator. Particularly, the solutions are developed through use of the finite element method and a modified method of characteristics.
Abstract:
A device for purifying air from non-desired gases and particles, in the case of nuclear power plants from radiating particles and gaseous iodine, and for extermination of microorganisms and removal from the air. The device includes a purifying chamber through which the air to be purified is arranged to flow. In the structurally grounded purifying chamber ionized air (1) is led to a water dust or vapor which can be oxidized with hydrogen peroxide (6) and by increasing the voltage level of the ionization to produce ozone and to be led further to high voltage operated ion blast tips (8) producing a continuous ion jet, which is directed onto collecting surfaces (9) and taking with it droplets, particulate materials and gaseous components connected to them. The volume of the air to be purified determines the shape and volume of the purifying device.
Abstract:
A process control system, more particularly, a process control system for controlling electrostatic separation for the separation of particulate materials is provided.