Laser assisted chemical etching method for release microscale and nanoscale devices
    91.
    发明授权
    Laser assisted chemical etching method for release microscale and nanoscale devices 有权
    激光辅助化学蚀刻方法用于释放微米级和纳米级器件

    公开(公告)号:US07419915B2

    公开(公告)日:2008-09-02

    申请号:US11061485

    申请日:2005-02-17

    Abstract: A method using an etchant and a laser for localized precise heating enables precise etching and release of MEMS devices with improved process control while expanding the number of materials used to make MEMS, including silicon-dioxide patterned films buried in and subsequently released from bulk silicon, as a direct write method of release of patterned structures that enables removal of only that material needed to allow the device to perform to be precisely released, after which, the bulk material can be further processed for additional electrical or packaging functions.

    Abstract translation: 使用蚀刻剂和激光器进行局部精确加热的方法使得可以通过改进的工艺控制精确地蚀刻和释放MEMS器件,同时扩大用于制造MEMS的材料的数量,包括埋入并随后从体硅释放的二氧化硅图案化膜, 作为图案化结构的释放的直接写入方法,其能够仅去除允许器件执行精确释放所需的材料,之后可以进一步处理散装材料以用于额外的电气或封装功能。

    Nanomachined mechanical components using nanoplates, methods of fabricating the same and methods of manufacturing nanomachines
    93.
    发明申请
    Nanomachined mechanical components using nanoplates, methods of fabricating the same and methods of manufacturing nanomachines 失效
    使用纳米板的纳米机械部件,其制造方法和制造纳米机械的方法

    公开(公告)号:US20080006888A1

    公开(公告)日:2008-01-10

    申请号:US11263476

    申请日:2005-10-31

    Abstract: Disclosed herein is a method of fabricating nano-components using nanoplates, including the steps of: printing a grid on a substrate using photolithography and Electron Beam Lithography; spraying an aqueous solution dispersed with nanoplates onto the grid portion to position the nanoplates on the substrate; depositing a protective film of a predetermined thickness on the substrate and the nanoplates positioned on the substrate; ion-etching the nanoplates deposited with the protective film by using a Focused Ion Beam (FIB) or Electron Beam Lithography; and eliminating the protective film remaining on the substrate using a protective film remover after the ion-etching of the nanoplates, and a method of manufacturing nanomachines or nanostructures by transporting such nano-components using a nano probe and assembling with other nano-components. The present invention makes it possible to fabricate the high-quality nano-components in a more simple and easier manner at a lower cost, as compared to other conventional methods. Further, the present invention provides a method of implementing nanomachines through combination of such nano-components and biomolecules, etc.

    Abstract translation: 本文公开了使用纳米板制造纳米组分的方法,包括以下步骤:使用光刻和电子束光刻在衬底上印刷栅格; 将分散有纳米板的水溶液喷射到栅格部分上以将纳米板定位在基底上; 在衬底和位于衬底上的纳米板上沉积预定厚度的保护膜; 通过使用聚焦离子束(FIB)或电子束光刻法离子蚀刻沉积有保护膜的纳米板; 并且在纳米板的离子蚀刻之后使用保护膜去除剂去除残留在基板上的保护膜,以及通过使用纳米探针传输这种纳米成分并与其他纳米成分组装来制造纳米机械或纳米结构的方法。 与其它常规方法相比,本发明可以以更简单和更容易的方式以更低的成本制造高质量的纳米组分。 此外,本发明提供了通过这些纳米组分和生物分子等的组合来实现纳米机器的方法。

    Precision position determining method
    94.
    发明授权
    Precision position determining method 失效
    精确位置确定方法

    公开(公告)号:US07209858B1

    公开(公告)日:2007-04-24

    申请号:US11240756

    申请日:2005-09-30

    CPC classification number: B23K26/04 B81C1/00626 B81C2201/0143

    Abstract: A method for generating a surface profile of a microstructure. The profile is processed to determine positions of at least two edges and an approximate center point of the profiled surface. Segments of points on the determined profile are fit to a straight line centered at the approximate center point. A standard deviation of the fitted points is measured. The length and position of the segment are varied until a minimum standard deviation is determined and the process is repeated for segments having different lengths. The point is determined from the longest segment having a standard deviation approximately equal to the minimum standard deviation of all of the segment lengths.

    Abstract translation: 一种用于产生微结构的表面轮廓的方法。 处理轮廓以确定至少两个边缘的位置和成型表面的近似中心点。 所确定的轮廓上的点的分段适合以大致中心点为中心的直线。 测量拟合点的标准偏差。 片段的长度和位置是变化的,直到确定最小标准偏差,并且对具有不同长度的片段重复该过程。 该点由具有大致等于所有段长度的最小标准偏差的标准偏差的最长段确定。

    Fabrication of three dimensional structures
    95.
    发明授权
    Fabrication of three dimensional structures 有权
    三维结构的制作

    公开(公告)号:US07160475B2

    公开(公告)日:2007-01-09

    申请号:US10301208

    申请日:2002-11-21

    Abstract: The present disclosure relates to a method for generating a three-dimensional microstructure in an object. In one embodiment, a method for fabricating a microscopic three-dimensional structure is provided. A work piece is provided that includes a target area at which the three-dimensional structure is to be fabricated. The target area has a plurality of virtual dwell points. A shaped beam is provided to project onto the work piece. The intersection of the shaped beam with the work piece defines a beam incidence region that has a desired shape. The beam incidence region is sufficiently large to encompass multiple ones of the virtual dwell points. The shaped beam is moved across the work piece such that different ones of the virtual dwell points come into it and leave it as the beam moves across the work piece thereby providing different doses to different ones of the virtual dwell points as the different dwell points remain in the beam incidence region for different lengths of time during the beam scan. In this way, a desired dose array of beam particles is applied onto the target area to form the three dimensional microstructure.

    Abstract translation: 本公开涉及一种用于在物体中产生三维微结构的方法。 在一个实施例中,提供了一种用于制造微观三维结构的方法。 提供了包括要制造三维结构的目标区域的工件。 目标区域具有多个虚拟驻留点。 提供成形梁以投影到工件上。 成形梁与工件的交点限定了具有期望形状的射束入射区域。 光束入射区域足够大以包含多个虚拟驻留点。 成形的梁移动穿过工件,使得不同的虚拟停留点进入并离开它,当梁移动穿过工件,从而当不同的停留点保持不同时向不同的虚拟停留点提供不同的剂量 在光束入射区域中在束扫描期间不同长度的时间。 以这种方式,将期望的束粒子的剂量阵列施加到目标区域上以形成三维微结构。

    Laser assisted chemical etching method for release of microscale and nanoscale devices
    96.
    发明申请
    Laser assisted chemical etching method for release of microscale and nanoscale devices 有权
    激光辅助化学蚀刻方法用于微尺寸和纳米级器件的释放

    公开(公告)号:US20060183330A1

    公开(公告)日:2006-08-17

    申请号:US11061485

    申请日:2005-02-17

    Abstract: A method using an etchant and a laser for localized precise heating enables precise etching and release of MEMS devices with improved process control while expanding the number of materials used to make MEMS, including silicon-dioxide patterned films buried in and subsequently released from bulk silicon, as a direct write method of release of patterned structures that enables removal of only that material needed to allow the device to perform to be precisely released, after which, the bulk material can be further processed for additional electrical or packaging functions.

    Abstract translation: 使用蚀刻剂和激光器进行局部精确加热的方法使得可以通过改进的工艺控制精确地蚀刻和释放MEMS器件,同时扩大用于制造MEMS的材料的数量,包括埋入并随后从体硅释放的二氧化硅图案化膜, 作为图案化结构的释放的直接写入方法,其能够仅去除允许器件执行精确释放所需的材料,之后可以进一步处理散装材料以用于额外的电气或封装功能。

    Method for manufacturing a patterned structure
    97.
    发明申请
    Method for manufacturing a patterned structure 失效
    图案化结构的制造方法

    公开(公告)号:US20060183309A1

    公开(公告)日:2006-08-17

    申请号:US10547798

    申请日:2004-03-04

    Abstract: A method for forming a micro- or nano-pattern of a material on a substrate is presented. The method utilizes a buffer layer assisted laser patterning (BLALP). A layered structure is formed on the substrate, this layered structure being in the form of spaced-apart regions of the substrate defined by the pattern to be formed, each region including a weakly physisorbed buffer layer and a layer of the material to be patterned on top of the buffer layer. A thermal process is then applied to the layered structure to remove the remaining buffer layer in said regions, and thus form a stable pattern of said material on the substrate resulting from the buffer layer assisted laser patterning. The method may utilize either positive or negative lithography. The patterning may be implemented using irradiation with a single uniform laser pulse via a standard mask used for optical lithography.

    Abstract translation: 提出了在衬底上形成材料的微观或纳米图案的方法。 该方法利用缓冲层辅助激光图案化(BLALP)。 在基板上形成分层结构,该分层结构是由要形成的图案限定的衬底的间隔开的区域的形式,每个区域包括弱物理缓冲层和待图案化的材料层 缓冲层顶部。 然后将热处理施加到层状结构以去除所述区域中的剩余缓冲层,从而由缓冲层辅助激光图案化形成在衬底上的所述材料的稳定图案。 该方法可以利用正光刻或负光刻。 可以通过经由用于光学光刻的标准掩模的单个均匀激光脉冲的照射来实现图案化。

    Method of manufacturing a microstructure
    99.
    发明申请
    Method of manufacturing a microstructure 审中-公开
    微结构制造方法

    公开(公告)号:US20060108327A1

    公开(公告)日:2006-05-25

    申请号:US10997222

    申请日:2004-11-23

    CPC classification number: H01L21/268 B81C1/00492 B81C2201/0143 H01L21/2633

    Abstract: Disclosed is a method of manufacturing a microstructure that requires a first material and a second material attached together and a laser system for producing a laser beam. The first material should exhibit an ablation threshold that does not exceed a predetermined ablation fluence of the laser beam and the second material should exhibit a second ablation threshold that exceeds the predetermined ablation fluence. The removal process comprises removing a portion of the first material to leave a remnant thereof at an interface of the two materials and then, ablating the remnant material using the laser beam at the predetermined ablation fluence to remove the remnant material. The process of selecting the first of the two materials is based on the predetermined ablation fluence of the laser beam; and the selection a laser system is based on the respective ablation thresholds of the first and second materials.

    Abstract translation: 公开了一种制造需要第一材料和第二材料附着在一起的微结构的方法和用于产生激光束的激光系统。 第一材料应该呈现不超过激光束的预定消融能量密度的消融阈值,并且第二材料应该呈现超过预定消融注量的第二烧蚀阈值。 去除过程包括去除第一材料的一部分以在两种材料的界面处留下残留物,然后使用激光束以预定的消融能量密度去除剩余材料以去除残余材料。 选择两种材料中的第一种材料的过程是基于激光束的预定消融能量密度; 并且激光系统的选择基于第一和第二材料的各自的消融阈值。

    Precision machining method using a near-field scanning optical microscope
    100.
    发明申请
    Precision machining method using a near-field scanning optical microscope 失效
    使用近场扫描光学显微镜的精密加工方法

    公开(公告)号:US20060027543A1

    公开(公告)日:2006-02-09

    申请号:US10911071

    申请日:2004-08-03

    Abstract: A method for manufacturing a microstructure device using a near field scanning optical microscope (NSOM) laser micromachining system. A microstructure device preform, including an existing feature, is provided. The NSOM probe tip is scanned over a portion of the preform selected such that a plurality of scan lines cross the existing feature. Scanned locations of the existing feature in at least two scan lines are determined. The orientation of the existing feature is determined based on the scanned locations and the shape of the existing feature. At least one expected machining location in a subsequent scan line is determined based on the shape and orientation of the existing feature. The micro-machining laser is pulsed as the NSOM probe is scanned through the expected machining location(s) during the subsequent scan lines to form at least one fine feature on the microstructure device preform, thus, completing the microstructure device.

    Abstract translation: 一种使用近场扫描光学显微镜(NSOM)激光微加工系统制造微结构器件的方法。 提供了包括现有特征的微结构器件预制件。 在选定的预成型件的一部分上扫描NSOM探针针头,使得多条扫描线与现有特征交叉。 确定至少两条扫描线中现有特征的扫描位置。 现有特征的方位根据已扫描的位置和现有特征的形状来确定。 基于现有特征的形状和取向来确定后续扫描线中的至少一个预期加工位置。 当在随后的扫描线期间通过预期的加工位置扫描NSOM探针以在微结构器件预制件上形成至少一个精细特征时,微加工激光器被脉冲,从而完成微结构器件。

Patent Agency Ranking