Abstract:
The present invention provides a radiation source module for use in a fluid treatment system. In one embodiment, the module comprises: a substantially elongate first support member having a longitudinal first axis; and a first pair of radiation source assemblies extending from the first support member, each radiation source assembly comprising a radiation source; wherein the first pair of radiation source assemblies is oriented such that a second axis extending through a center point of each radiation source assembly is disposed at an angle with respect to the first axis. In another embodiment, the module comprises a substantially elongate first support member having a longitudinal first axis; and a first column of radiation source assemblies extending from the first support member, and a second column of radiation source assemblies extending from the first support member, each radiation source assembly comprising a radiation source; the first column of radiation source assemblies and the second column of radiation source assemblies disposed adjacent one another.
Abstract:
A radiation source module comprising a support member, a radiation source assembly connected to the support member, the radiation source assembly comprising at least one elongate radiation source having a source longitudinal axis and a module-to-surface seal disposed on a first elongate surface of the module, the first elongate surface comprising a first longitudinal axis transverse to the source longitudinal axis, the seal operable to provide a substantially fluid tight seal between the first surface and a second surface which is adjacent to the first surface. A fluid treatment system employ the radiation source module is also described.
Abstract:
Ballast water treatment apparatus and methods for preventing foreign aquatic invasive species form entering marine ecological zones by translocation in ship's ballast water. The apparatus includes a housing, a filter member, and UV water treatment chambers. Methods include use of a ship's fire hydrant system for moving ballast water from the ship's ballast tanks into the apparatus for filtration and treatment. In-port service vessels and dock-side service vehicles are equipped with the treatment and filtration apparatus to provided in-port or dock-side ballast water treatment services. Related methods are also provided.
Abstract:
An apparatus for disinfecting a fluid includes a tube connected with a source of the fluid. The tube allows the fluid to be transported from the source to a discharge. An ultraviolet lamp is positioned adjacent the tube, and is adapted to transmit light waves through the fluid. The tube can be a coiled tube having one or more coils thereby forming a helical tube. Each coil of the helical tube has an inner diameter and an outer diameter. The inner diameters of the coils define a space or opening. The ultraviolet lamp is positioned within the opening. A fluid passing through the coils of the tube are exposed to the ultraviolet light. The method of the invention includes moving water from a source to a discharge, through the tube while the lamp is activated. Water will become disinfected as it is exposed to the ultraviolet light of the lamp.
Abstract:
A sterilizing method and apparatus for destroying live microorganisms including viruses in fluent material, such as air and water, in large volume. As a preferred embodiment of this invention, air is drawn, from the inlet 1, through the inlet filter unit 3 and into the circuitous sterilizing chamber 10 that is irradiated by numbers of UV lamp tubes 15, and through the discharging filter unit 13 and then out through outlet 11. A sample window 12 is built in for quality supervision. Visual inspection windows 5 and UV sensors 6 are provided for easy supervision and auto-control. The sterilizing chamber 10 also includes flow resistant reducing feature 7 and internal reflecting surfaces 9.
Abstract:
A fluid treatment apparatus comprises a plurality of elongate UV lamps 13 mounted in a duct 10 and a cleaning assembly 14 comprising a plurality of cleaning heads 20 which are rotated around respective lamps and are simultaneously driven longitudinally thereof to clean the lamps 13 and the internal surface of the duct 10. The cleaning heads 14 each comprise a plurality of portions 28 of titanium dioxide which are biased against the surface of the respective lamps 13 and which produce hydroxyls and oxygen free radicals in the presence of water and oxygen. Hydroxyls and oxygen free radicals are highly reactive and will break down the cells and molecules of the accumulated material on the lamps.
Abstract:
An apparatus (1) for irradiating material comprises a single UV, pulsed brigth white light or IR lamp (2) with a centrally disposed receptacle (3) for containing material to be irradiated. The lamp can be an elongate hollow tube (2) of annular construction. Internal formations may be present within the lamp to control the position of the arc. For example, the lamp may have a plurality of longitudinal segments arranged such that a discharge arc is formed within each segment or internal formations may be provided to direct the position of the arc within the lamp. A pump (36) may be included for moving material through the receptacle which is preferably the hollow area within the annulus of the elongate hollow tube. Material can be treated batchwise or in a continuous process. This apparatus is suitable for the sterilisation of biological and/or non-biological materials. A further use is in carrying out photolysis on chemical substances in photochemical reactions.
Abstract:
A disinfectant treatment for self-contained potable water systems. A lamp or lamps within the interior of at least one component system in which water is resident. During operation of the system. As the water tank, water heater, water filter, or other component which holds a volume of water. By putting a radioactive and a microbial effect in response to exposure to UV radiation may be formed of the vessel or other component. The radioactive material may be tin dioxide, titanium dioxide, or other material that produces hydroxyl ions in response to UV exposure. The hydroxyl ions flow from the vessel or other component into the piping and other components so as to attack/inhibit microbial action throughout the system. The lamps are mounted within quartz sleeves for immersion in water or other components. The quartz sleeves to prevent vibration damage. May also be used to of the system so as to prevent friction freeze damage.
Abstract:
The present invention provides a radiation source module for use in a fluid treatment system. In one embodiment, the module comprises: a substantially elongate first support member having a longitudinal first axis; and a first pair of radiation source assemblies extending from the first support member, each radiation source assembly comprising a radiation source; wherein the first pair of radiation source assemblies is oriented such that a second axis extending through a center point of each radiation source assembly is disposed at an angle with respect to the first axis. In another embodiment, the module comprises a substantially elongate first support member having a longitudinal first axis; and a first column of radiation source assemblies extending from the first support member, and a second column of radiation source assemblies extending from the first support member, each radiation source assembly comprising a radiation source;the first column of radiation source assemblies and the second column of radiation source assemblies disposed adjacent one another.
Abstract:
A radiation source module comprising a support member, a radiation source assembly connected to the support member, the radiation source assembly comprising at least one elongate radiation source having a source longitudinal axis and a module-to-surface seal disposed on a first elongate surface of the module, the first elongate surface comprising a first longitudinal axis transverse to the source longitudinal axis, the seal operable to provide a substantially fluid tight seal between the first surface and a second surface which is adjacent to the first surface. A fluid treatment system employ the radiation source module is also described.