Abstract:
A light guide mechanism for an illuminance sensor includes: a lighting window configured to pass through an external light; the illuminance sensor configured to detect an illuminance of the light passed through the lighting window; and a light-blocking part provided between the lighting window and the illuminance sensor and configured to block a light other than the light passed through the lighting window. The light-blocking part has an inner surface inclined with respect to a line perpendicular to a light-receiving surface of the illuminance sensor. A direction of inclination of the inner surface is such that the inner surface faces the light-receiving surface of the illuminance sensor.
Abstract:
The photosensor comprises an insulating layer formed over the silicon substrate; an ultraviolet photosensitive element formed over the insulating layer and having a first diffusion layer, a second diffusion layer provided spaced away from the first diffusion layer, and a third diffusion layer connected with the first diffusion layer and the second diffusion layer respectively; and a visible light photosensitive element formed over the insulating layer with being spaced away from the ultraviolet photosensitive element, and having a fourth diffusion layer, a fifth diffusion layer provided spaced away from the fourth diffusion layer, and a sixth diffusion layer connected with the fourth diffusion layer and the fifth diffusion layer respectively.
Abstract:
An optical transceiver includes at least one light source and at least one detector mounted on the same surface of the same substrate. The detector is to receive light from other than a light source on the surface. At least one of the light source and the detector is mounted on the surface. An optics block having optical elements for each light source and detectors is attached via a vertical spacer to the substrate. Electrical interconnections for the light source and the detector are accessible from the same surface of the substrate with the optics block attached thereto. One of the light source and the detector may be monolithically integrated into the substrate.
Abstract:
One or more problems related to processing workpieces using processes that involve optical radiation are presented along with solutions to one or more of the problems. One embodiment of the invention comprises a sensor apparatus for collecting optical radiation data representing one or more process conditions used for processing a workpiece. In a further embodiment, the sensor apparatus is also configured for measuring data other than optical radiation.
Abstract:
An optical module includes a light emitting element, a connector part that supports one end of an optical fiber and optically couples the optical fiber to the light emitting element, and a monitoring light receiving element that has a characteristic to increase photosensitivity with an increase in an ambient temperature, and receives a part of components of light emitted from the light emitting element.
Abstract:
The invention relates to a microstructured sensor, having at least one measurement chip in which there is formed a first measurement area having a first measurement structure and a second measurement area having a second measurement structure, the measurement areas being offset to one another in a lateral direction, one cap chip that is fastened in vacuum-tight fashion to the measurement chip in a connecting area, one intermediate space, formed between the measurement chip and the cap chip, that is sealed outwardly by the connecting area and in which the measurement areas are situated, and at least one contact area, formed on the measurement chip, and left exposed by the cap chip, for the contacting of the measurement chip. The sensor can be in particular a gas sensor for measuring a gas concentration, or an acceleration sensor.
Abstract:
An image sensor which may maximize the optical integrity by maximizing the amount of incident light through a microlens layer and a method for manufacturing an image sensor. An image sensor may include a pixel region, a microlens layer, and at least one microlens. The microlens layer may include a plurality of microlenses on the pixel region. At least one microlens has a shape different from the rest of the microlenses.
Abstract:
A high dynamic range integrated (HDRI) receiver includes a variable optical attenuator (VOA) for attenuating an incoming optical signal before the optical signal is directed to a photo-detector for conversion into an electrical signal. An optical block receives the optical signal from an optical fiber and includes optics for directing the optical signal to the VOA, and for directing the optical signal from the VOA to the photo-detector.
Abstract:
An optical transceiver includes at least one light source and at least one detector mounted on the same surface of the same substrate. The detector is to receive light from other than a light source on the surface. At least one of the light source and the detector is mounted on the surface. An optics block having optical elements for each light source and detectors is attached via a vertical spacer to the substrate. Electrical interconnections for the light source and the detector are accessible from the same surface of the substrate with the optics block attached thereto. One of the light source and the detector may be monolithically integrated into the substrate.
Abstract:
A cost-effective FPA includes a plurality of detectors per pixel, wherein radiation is directed by a microlens array into respective focal regions that are covered by the union of the detectors' collections regions within each pixel and any defective detectors are de-selected in the ROIC. The operability of each pixel is evaluated, and a map generated specifying detector de-selection for each pixel. This map is read into memory in the ROIC to de-select bad detectors. Bad detectors are preferably allowed to float to a photovoltage and re-emit some of their accumulated photo charge to neighboring detectors to improve collection efficiency. The radiation levels are preferably read out on a pixel-by-pixel basis. Accordingly, the signals from the selected detectors are combined within each pixel.