Abstract:
A thin film depositing apparatus and a thin film depositing method used by the thin film depositing apparatus. The thin film depositing apparatus includes a deposition chamber through which a process gas outlet of a deposition source is arranged; a transfer shuttle disposed in the deposition chamber, the transfer shuttle comprising a mounting plate for loading a substrate, the transfer shuttle being reciprocal with respect to the process gas outlet; and at least one bendable auxiliary plate installed at one side of the transfer shuttle, the bendable auxiliary plate closing the process gas outlet when opposite the process gas outlet, the bendable auxiliary plate comprising a folding member for placing the bendable auxiliary plate in each of an unbent state and bent state dependent upon the position of the transfer shuttle.
Abstract:
A thin film depositing apparatus and a thin film deposition method using the apparatus. The thin film depositing apparatus includes a chamber configured to have a substrate mounted therein, an ejection unit configured to move in the chamber and to eject a deposition vapor to the substrate, and a source supply unit configured to supply a source of the deposition vapor to the ejection unit.
Abstract:
An image sensor which may maximize the optical integrity by maximizing the amount of incident light through a microlens layer and a method for manufacturing an image sensor. An image sensor may include a pixel region, a microlens layer, and at least one microlens. The microlens layer may include a plurality of microlenses on the pixel region. At least one microlens has a shape different from the rest of the microlenses.
Abstract:
A method for preparing drinking water for livestock includes mixing 2.5 to 5.0 WT % of tourmaline and 2.5 to 5.0 WT % of illite as natural minerals in powder form of 2 to 3 μm with 90 to 95 WT % of water to produce a mixed solution, and maintaining the mixed solution for 5 to 7 hours at room temperature, and removing the tourmaline powders and illite powders to produce leachate; mixing 15 to 25 WT % of detoxified sulfur in powder form of 2 to 3 μm, 10 to 25 WT % of Rrhus verniciflua Stokes extract, and 10 to 25 WT % of Momordicae Semen extract with 25 to 65 WT % of the leachate to produce a liquid mixture, and maintaining the liquid mixture for 12 hours; and mixing 150 to 250 ml of the liquid mixture with 20 l of water and maintaining the liquid mixture for 6 to 7 hours for amplification.
Abstract:
A thin film depositing apparatus and a thin film depositing method used by the thin film depositing apparatus. The thin film depositing apparatus includes a deposition chamber through which a process gas outlet of a deposition source is arranged; a transfer shuttle disposed in the deposition chamber, the transfer shuttle comprising a mounting plate for loading a substrate, the transfer shuttle being reciprocal with respect to the process gas outlet; and at least one bendable auxiliary plate installed at one side of the transfer shuttle, the bendable auxiliary plate closing the process gas outlet when opposite the process gas outlet, the bendable auxiliary plate comprising a folding member for placing the bendable auxiliary plate in each of an unbent state and bent state dependent upon the position of the transfer shuttle.
Abstract:
Disclosed a transmission apparatus in a CDMA mobile communication system. Transmission frames each have a plurality of time slots, and each of the time slots includes two data parts having the same length, a midamble intervening between the data parts, and a guard period for dividing the consecutive time slots. The transmission apparatus modulates the frames into a radio signal with a modulation signal and transmits the modulated radio signal using a plurality of antennas. A power amplifier amplifies the radio signal. A controller generates a switching control signal in a guard period of time slots of a frame associated with the radio signal amplified by the power amplifier. A switch switches the amplified radio signal from the power amplifier between a first and a second antenna in response to the switching control signal.
Abstract:
A semiconductor device such as a CMOS image sensor and a method of fabricating the same, in which a stable alignment mark is formed. The semiconductor device includes an isolation layer formed in a scribe lane region of a semiconductor substrate and having a groove, an insulating layer having a hole through which the groove is exposed and formed on the semiconductor substrate, and a metal layer formed on the groove and the hole. The groove is formed in the isolation layer and is used as an alignment mark formation region. Thus, although the thickness of an interlayer insulating layer is not thick, it can be compensated for by the groove formed in the isolation layer.
Abstract:
A data transmitting/receiving apparatus and method using an antenna array in a mobile communication system. A Node B measures a transmission status of each transmission antenna, classifies transmission data according to priority, and transmits to a UE high-priority data through a transmission antenna at a relatively good transmission status and low-priority data through a transmission antenna at a relatively poor transmission status.
Abstract:
A mobile communication apparatus having an antenna array and a mobile communication method performed in the mobile communication apparatus, wherein the mobile communication apparatus includes a base station and mobile station, each having an antenna array. The mobile station measures the downlink characteristics of a channel for each antenna from a signal received from a base station, determines long-term information in which the correlation property of the channel for each antenna has been reflected from the measured downlink characteristics, transforms the long-term information into a feedback signal, and transmits the feedback signal to the base station. The base station receives the feedback signal, restores the long-term information from the received feedback signal, performs basis mapping and basis transformation on a dedicated physical channel signal using the restored long-term information, adds the basis-mapped and basis-transformed signal to each of pilot channel signals, and transmits the addition results to the mobile station.
Abstract:
There is provided a transmission diversity system. In the case where an MS supporting a different antenna transmission diversity scheme enters the service area of a 4-antenna transmission diversity UTRAN, the UTRAN can transmit pilot signals and common data signals to the MS without the need of modifications to the MS. Therefore, power is distributed among antennas of the UTRAN and system capacity is increased.