Abstract:
A deflecting prism for electromagnetic radiation, in particular for refractometer- and/or ATR-measurements, is part of a measuring configuration. The deflecting prism has a body produced in one piece from a mono-crystal. The body has at least two beam conductive surfaces on a side of the body opposite each other or circumferentially about the body and a measuring surface lying between the beam conductive surfaces or surrounded by the latter. The body further has at least one beam entry surface or a beam exit surface. Accordingly, the measuring surface lies on an elevation formed on the body, which crosses over via a ledge surrounding the elevation into the remaining part of the body. On the remaining part, the beam conductive surfaces and/or the beam entry surface or exit surface lie.
Abstract:
Systems and methods for measuring an intensity characteristic of a light beam are disclosed. The methods include directing the light beam into a prism assembly that includes a thin prism sandwiched by two transparent plates, and reflecting a portion of the light beam by total-internal-reflection surface to an integrating sphere while transmitting the remaining portion of the light beam through the two transparent plates to a beam dump. The method also includes detecting light captured by the integrating sphere and determining the intensity characteristic from the detected light.
Abstract:
An optical sensing module including a lens and a sensing device is provided. The lens has an optical axis. The sensing device is disposed under the lens, wherein the sensing device is to receive an object beam passing the lens. The optical axis of the lens deviates from a geometric center of the sensing device. An optical sensing module including a prism film, a sensing device and a lens is further provided. The prism film has a plurality of prisms. The sensing device is disposed under the prism film, wherein the sensing device is to receive an object beam sequentially passing the prism film and the lens. The lens is disposed between the prism film and the sensing device.
Abstract:
An optoelectronic module includes a beam transmitter, which emits at least one beam of light along a beam axis, and a receiver, which senses the light received by the module along a collection axis of the receiver, which is parallel to the beam axis within the module. Beam-combining optics direct the beam and the received light so that the beam axis is aligned with the collection axis outside the module. The beam-combining optics include multiple faces, including at least a first face configured for internal reflection and a second face comprising a beamsplitter, which is intercepted by both the beam axis and the collection axis.
Abstract:
An in-line laser beam waist analyzer system includes an optical prism that picks off a portion of a second surface reflection from either a laser processing focus lens or a protective debris shield for the processing lens and directs that focused light to a pixelated detector. This provides real time monitoring of the focused laser beam while it is processing material by welding, cutting, drilling, scribing or marking, without disrupting the process.
Abstract:
An in-line laser beam waist analyzer system includes an optical prism that picks off a portion of a second surface reflection from either a laser processing focus lens or a protective debris shield for the processing lens and directs that focused light to a pixelated detector. This provides real time monitoring of the focused laser beam while it is processing material by welding, cutting, drilling, scribing or marking, without disrupting the process.
Abstract:
In a photometry device, photopic vision luminance Lp is measured by a first luminance measuring unit including a first light filter 4 and a first photoelectric converter 5, and scotopic vision luminance Ls is measured by a second luminance measuring unit including a second light filter 6 and a second photoelectric converter 7. A calculation part 8 calculates mesopic vision luminance Lmes based on a measurement value (photopic vision luminance Lp) of the first luminance measuring unit and a ratio of a measurement value (scotopic vision luminance Ls) of the second luminance measuring unit to the measurement value (photopic vision luminance Lp) of the first luminance measuring unit. Consequently, the photometry device can improve measurement accuracy of the brightness (mesopic vision luminance) in mesopic vision.
Abstract:
The invention provides a prism optical system comprising at least four optical surfaces, each having optical functions. At least two of the four optical surfaces are each a rotationally asymmetric surface, and one of two surfaces on which light is incident or from which light exits out is capable of one transmission and two internal reflections.
Abstract:
Disclosed is a controllable light angle selecting device that includes a fixed light selecting means for transmitting light within a limited acceptance angle, optically connected to at least one light redirecting means capable of achieving a variable angular difference between light entering said light redirecting means and light exiting said light redirecting means. Also disclosed is a photometer employing such controllable light angle selecting device and arranged in the path of light between a light source and at least one light measuring sensor arranged to receive at least part of the light exiting from the controllable light angle selecting device.
Abstract:
A detector for receiving light impinging at a reception point and for measuring, for a plurality of angles of incidence, at least one property of the light. The detector includes a plurality of light sensors, each of which is associated with an acceptance interval (which defines the angle of incidence which a light beam must have to reach the light sensor) and at least two acceptance intervals are different from one another. The detector further includes an optical conductor for conducting a light beam from the reception point to a particular light sensor, but only if the angle of incidence of the light beam belongs to the acceptance interval associated with the particular light sensor.