Abstract:
High-efficiency line-forming optical systems and methods for defect annealing and dopant activation are disclosed. The system includes a CO2-based line-forming system configured to form at a wafer surface a first line image having between 2000 W and 3000 W of optical power. The line image is scanned over the wafer surface to locally raise the temperature up to a defect anneal temperature. The system can include a visible-wavelength diode-based line-forming system that forms a second line image that can scan with the first line image to locally raise the wafer surface temperature from the defect anneal temperature to a spike anneal temperature. Use of the visible wavelength for the spike annealing reduces adverse pattern effects and improves temperature uniformity and thus annealing uniformity.
Abstract:
High-efficiency line-forming optical systems and methods for defect annealing and dopant activation are disclosed. The system includes a CO2-based line-forming system configured to form at a wafer surface a first line image having between 2000 W and 3000 W of optical power. The line image is scanned over the wafer surface to locally raise the temperature up to a defect anneal temperature. The system can include a visible-wavelength diode-based line-forming system that forms a second line image that can scan with the first line image to locally raise the wafer surface temperature from the defect anneal temperature to a spike anneal temperature. Use of the visible wavelength for the spike annealing reduces adverse pattern effects and improves temperature uniformity and thus annealing uniformity.
Abstract:
Laser annealing systems and methods for annealing a semiconductor wafer with ultra-short dwell times are disclosed. The laser annealing systems can include one or two laser beams that at least partially overlap. One of the laser beams is a pre-heat laser beam and the other laser beam is the annealing laser beam. The annealing laser beam scans sufficiently fast so that the dwell time is in the range from about 1 μs to about 100 μs. These ultra-short dwell times are useful for annealing product wafers formed from thin device wafers because they prevent the device side of the device wafer from being damaged by heating during the annealing process. Embodiments of single-laser-beam annealing systems and methods are also disclosed.
Abstract:
A line-forming optical system and method are disclosed that form a line image with high-efficiency. A method includes forming a laser beam having a first intensity profile with a Gaussian distribution in at least a first direction and passing at least 50% of the laser beam in the first direction to form a first transmitted light. The method also includes: focusing the first transmitted light at an intermediate image plane to define a second intensity profile having a central peak and first side peaks immediately adjacent the central peak; then truncating the second intensity profile within each of first side peaks to define a second transmitted light; and then forming the line image at an image plane from the second transmitted light.
Abstract:
A line-forming optical system and method are disclosed that form a line image with high-efficiency. A method includes forming a laser beam having a first intensity profile with a Gaussian distribution in at least a first direction and passing at least 50% of the laser beam in the first direction to form a first transmitted light. The method also includes: focusing the first transmitted light at an intermediate image plane to define a second intensity profile having a central peak and first side peaks immediately adjacent the central peak; then truncating the second intensity profile within each of first side peaks to define a second transmitted light; and then forming the line image at an image plane from the second transmitted light.
Abstract:
The disclosure is directed to laser spike annealing using fiber lasers. The method includes performing laser spike annealing of a surface of a wafer by: generating with a plurality of fiber laser systems respective CW output radiation beams that partially overlap at the wafer surface to form an elongate annealing image having a long axis and a length LA along the long axis; heating at least a region of the wafer to a pre-anneal temperature TPA; and scanning the elongate annealing image over the wafer surface and within the pre-heat region so that the annealing image has a dwell time tD in the range 30 ns≦tD≦10 ms and raises the wafer surface temperature to an annealing temperature TA.
Abstract:
Laser annealing systems and methods with ultra-short dwell times are disclosed. The method includes locally pre-heating the wafer with a pre-heat line image and then rapidly scanning an annealing image relative to the pre-heat line image to define a scanning overlap region that has a dwell time is in the range from 10 ns to 500 ns. These ultra-short dwell times are useful for performing surface or subsurface melt annealing of product wafers because they prevent the device structures from reflowing.
Abstract:
Laser annealing systems and methods with ultra-short dwell times are disclosed. The method includes locally pre-heating the wafer with a pre-heat line image and then rapidly scanning an annealing image relative to the pre-heat line image to define a scanning overlap region that has a dwell time is in the range from 10 ns to 500 ns. These ultra-short dwell times are useful for performing surface or subsurface melt annealing of product wafers because they prevent the device structures from reflowing.
Abstract:
High-efficiency line-forming optical systems and methods that employ a serrated aperture are disclosed. The line-forming optical system includes a laser source, a beam conditioning optical system, a first aperture device, and a relay optical system that includes a second aperture device having the serrated aperture. The serrated aperture is defined by opposing serrated blades configured to reduce intensity variations in a line image formed at an image plane as compared to using an aperture having straight-edged blades.
Abstract:
Laser annealing systems and methods with ultra-short dwell times are disclosed. The method includes locally pre-heating the wafer with a pre-heat line image and then rapidly scanning an annealing image relative to the pre-heat line image to define a scanning overlap region that has a dwell time is in the range from 10 ns to 500 ns. These ultra-short dwell times are useful for performing surface or subsurface melt annealing of product wafers because they prevent the device structures from reflowing.