Abstract:
A fiber optic sensor interrogation system with inbuilt passive power limiting capability that provides improved safety performance for use in explosive atmospheres.
Abstract:
A path light that utilizes an ambient light sensor to determine the lighting conditions may experience feedback from its light source if it determines that the lighting conditions are appropriate to illuminate the path light's light source. The path light, as disclosed herein, may compute an offset value to ascertain the amount of feedback from the light source. Upon learning the offset value, the path light may subtract the offset value from a detected amount of light to determine whether the lighting conditions of its surroundings still meet a threshold level of darkness for the path light to illuminate.
Abstract:
The objective of the present invention is to quickly and precisely correct the measured value for light reception power to the actual value with few resources, by installing a correction device for a light reception power monitor for signal light in an optical module. The correction device is equipped with a correction table which is referenced when correcting the measured value for the light reception power of signal light, and in this correction table multiple correction values are stored in advance on the basis of the correspondence relationships between multiple reference values and multiple actual values. In the correction table, for segments wherein the change in the actual values with respect to the change in the measured values is small, the interval between the reference values is made smaller and more correction values are stored than for segments wherein the change in the actual values with respect to the change in the measured values is large. When an input value indicating the measured value for the light reception power of the signal light matches a reference value in the correction table, the correction device reads from the correction table the correction value corresponding to the reference value. When an input value does not match a reference value in the correction table, the correction device calculates a correction value in accordance with a prescribed calculation formula on the basis of the input value.
Abstract:
An image sensor includes a plurality of pixels, a plurality of sense circuits, and a count circuit. Each sense circuit is configured to read out electrical signals from at least one pixel associated with the sense circuit in order to generate data representing whether or not photons have been received by the sense circuit. The count circuit is in communication with a sense circuit selected from the plurality of sense circuits. The count circuit is configured to provide integration results for the pixels associated with the sense circuits based on the data received from the sense circuits.
Abstract:
The present disclosure relates to an image calibrating method and device of a testing apparatus for thin film transistor (TFT) substrate. The method comprises following steps of: calculating an image offset value by using coordinate information of each pixel in a prescribed target image obtained by the testing apparatus for the thin film transistor substrate; and determining whether the offset value is smaller than a prescribed threshold value, in a case where the offset value is not smaller than the prescribed threshold value, adjusting the image by using the offset value and recalculating the offset value by using the coordinate information of each pixel in the adjusted image; in a case where the offset value is smaller than the prescribed threshold value, calibrating the image obtained by the testing apparatus for the thin film transistor substrate with the offset value as a calibrating value. The calibrating efficiency and calibrating accuracy of the testing method for the thin film transistor substrate are enhanced according to the present disclosure.
Abstract:
An illumination device comprises one or more emitter modules having improved thermal and electrical characteristics. According to one embodiment, each emitter module comprises a plurality of light emitting diodes (LEDs) configured for producing illumination for the illumination device, one or more photodetectors configured for detecting the illumination produced by the plurality of LEDs, a substrate upon which the plurality of LEDs and the one or more photodetectors are mounted, wherein the substrate is configured to provide a relatively high thermal impedance in the lateral direction, and a relatively low thermal impedance in the vertical direction, and a primary optics structure coupled to the substrate for encapsulating the plurality of LEDs and the one or more photodetectors within the primary optics structure.
Abstract:
A dark photodiode that is optically isolated from the signal photodiode and having a dark current in the absence of photons. A reference generating circuit configured to produce a reference voltage based on voltage at an anode of the signal photodiode. A voltage regulator circuit configured to regulate dark photodiode voltage at an anode of the dark photodiode based on the reference voltage. A current mirror circuit configured to produce, at an anode connecting to the signal photodiode, a mirrored current that is a mirrored version of a portion of the dark current.
Abstract:
A UV exposure dosimetry system includes at least one UV sensor that accurately measures the UV irradiance intensity. The UV dosimetry system integrates the measured UV irradiance intensity over time to calculate the real-time UV dosage and the vitamin D production by taking into account factors comprising UV sensor location, body surface area, clothing coverage, and sunscreen usage. Based on the measurement, the system can predict the time remaining to skin burn and the time remaining to reach daily goal of vitamin D production. The system also calculates the UV index in real-time, and can crowd source the measured data in a network. The UV dosimetry system supports multi-user control through an advanced and user friendly input and output interface.
Abstract:
An optical sensor arrangement (10) comprises a light sensor (11), a current source (41), an analog-to-digital converter (12) and a switch (44) which selectively couples the light sensor (11) or the current source (41) to an input (14) of the analog-to-digital converter (12).
Abstract:
A photodetector integrated circuit (IC) having an electromagnetic interference (EMI) sensor integrated therein is provided for sensing EMI at the photodetector. Integrating the EMI sensor into the photodetector IC ensures that the EMI sensor is in proximity to the photodetector so that any EMI that is sensed is actually EMI to which the photodetector is exposed. The sensed EMI may then be used for a number of reasons, such as to determine the root cause of damage to circuitry of the system, to determine the point in time at which an EMI event occurred, or to trigger a warning when a determination is made that an EMI limit has been reached.