Abstract:
An example method for obtaining a biopsy sample may include delivering a tumor marker to a patient, guiding a biopsy tool to a desired biopsy region within a patient's body, obtaining a biopsy sample from the desired biopsy region, removing the biopsy sample from the patient's body, and after removing the biopsy sample from the patient's body, scanning the biopsy sample to detect the presence of the tumor marker in the patient.
Abstract:
In a computer-implemented method and system for capturing the condition of a structure, the structure is scanned with a three-dimensional (3D) scanner. The 3D scanner generates 3D data. A point cloud or 3D model is constructed from the 3D data. The point cloud or 3D model is then analyzed to determine the condition of the structure.
Abstract:
A line scan wafer inspection system includes a confocal slit aperture filter to remove sidelobes and enhance resolution in the scanning direction. A position detector associated with the slit aperture filter monitors and corrects illumination line image positions relative to the slit aperture to keep image position variations within tolerable limits. Each detector measures a line position and then uses the line position signal to adjust optical, mechanical, and electronic components in the collection path in a feedback loop. The feedback loop may be employed in a runtime calibration process or during inspection to enhance stability.
Abstract:
A second set of superimposed gratings are superposed over a first set of superimposed gratings. The second set of gratings have a different periodicity from the first set of gratings or a different orientation. Consequently the first order diffraction pattern from the second set of superimposed gratings can be distinguished from the first order diffraction pattern from the first set of superimposed gratings.
Abstract:
In a computer-implemented method and system for capturing the condition of a structure, the structure is scanned with a three-dimensional (3D) scanner. The 3D scanner generates 3D data. A point cloud or 3D model is constructed from the 3D data. The point cloud or 3D model is then analyzed to determine the condition of the structure.
Abstract:
An automatic fingerprint system includes an optical sensor having a first light source that provides a collimated beam for interrogating a first sample surface, and a camera including a lens and a photodetector array having a camera field of view (FOVCAMERA)large enough to image the first sample surface. The camera is critical angle positioned relative to the first light source to receive specular reflection (glare) from the first sample surface to generate image data from the glare. The first light source and camera have substantially equal and opposite numerical apertures (NAs), A computer or processor that includes reference fingerprint templates receives a digitized form of the image data, and includes data processing software for (i) comparing the image data to reference fingerprint templates to determine whether the image data includes at least one fingerprint and (ii) for generating a fingerprint image if the fingerprint is determined to be present.
Abstract:
A first lens configured to convert light from the objective lens into parallel light includes a concave lens part having a concave curved face in a center portion of a flat face, and a convex lens part having a convex curved face around a flat face. Further, the first lens includes first and second regions configured to diverge light through the flat face and the concave curved face and a third region configured to collect light through the convex curved face and the concave curved face. When the sample is on a sample table and sealed in a two-dimensional electrophoresis substrate, light totally reflected by a side surface of the objective lens enters the second region. In contrast, when the sample is directly on the sample table, the light enters the third region.
Abstract:
An apparatus and method of performing photothermal chemical nanoidentification of a sample includes positioning a tip of a probe at a region of interest of the sample, with the tip-sample separation being less than about 10 nm. Then, IR electromagnetic energy having a selected frequency, ω, is directed towards the tip. Using PFT mode AFM operation, absorption of the energy at the region of interest is identified. Calorimetry may also be performed with the photothermal PFT system.
Abstract:
A diagnostic device includes a microscope configured to obtain image data on a plurality of cells and a computing device. The computing device is configured to receive the image data, identify at least a portion of each of the plurality of cells based on the received image data, determine at least one of a value of a morphological parameter for each identified at least a portion of the plurality of cells or a relative organization among the identified at least a portion of the plurality of cells, and calculate statistics for the plurality of cells based on the at least one of the determined values of the morphological parameter or the determined relative organization, the statistics including information suitable for distinguishing metastatic cells from non-metastatic cells. The diagnostic device further includes an output device configured to output the statistics for diagnosis.
Abstract:
In a computer-implemented method and system for capturing the condition of a structure, the structure is scanned with a three-dimensional (3D) scanner. The 3D scanner generates 3D data. A point cloud or 3D model is constructed from the 3D data. The point cloud or 3D model is then analyzed to determine the condition of the structure.