Abstract:
An X-ray tube includes: a Wehnelt electrode having a dent inside; a filament arranged in the dent of the Wehnelt electrode and configured to emit an electron beam when electricity is passed therethrough; an anode configured to emit an X-ray in response to the incident electron beam; an electrode part configured by at least one pair of electrode members, the electrode members facing each other across a path of the electron beam, a voltage being applied to each of the electrode members; a voltage controller configured to control the voltage applied to the electrode part; and a shield member arranged in contact with the Wehnelt electrode and configured to cover part of the dent by a projecting part.
Abstract:
A cathode HAS a cathode head in which a surface emitter is arranged that emits electrons upon application of a heating voltage. The surface emitter is fashioned as a parallel surface emitter with at least two emitter surfaces spaced apart from one another, to which at least one electrically conductive cutoff electrode is fed that is galvanically separated from the parallel surface emitter. Such a cathode has a good cutoff capability.
Abstract:
Provided is an X-ray generator for generating X-rays from an X-ray focal point that is a region in which electrons emitted from a filament impinge upon a rotating anode. The X-ray generator has a Wehnelt electrode for surrounding the filament, an attachment part formed integrally with the Wehnelt electrode, a pedestal to which the attachment part is attached, and a casing for housing the pedestal and the anticathode. The width of the space in which the anticathode is housed by the casing is less than the width of the space in which the pedestal is housed by the casing. The Wehnelt electrode extends into the space in which the anticathode is housed by the casing, in a state in which the attachment part is attached to the pedestal.
Abstract:
An indirectly heated cathode assembly is presented. The indirectly heated cathode assembly includes at least one electron source for generating a first electron beam, an emitter for producing a second electron beam when heated by the first electron beam and a focusing electrode for controlling, and directing the first electron beam towards the emitter.
Abstract:
An electron emitter assembly for use in an x-ray emitting device or other electron emitter-containing device is disclosed. In one embodiment, an x-ray tube is disclosed, including a vacuum enclosure that houses both an anode having a target surface, and a cathode positioned with respect to the anode. The cathode includes an electron emitter having a plurality of substantially parallel emission surfaces that collectively emit a beam of electrons for impingement on the target anode. In one aspect, the plurality of substantially parallel emission surfaces are angled relative focusing region so as to provide a substantially uniform thermal load on the target anode. In another aspect, the electron emitter includes a plurality of cut-outs that accommodate thermal expansion in the plane of the emitter. Accommodating thermal expansion in the plane of the emitter prevents distortions to the emitter that would tend to alter the focusing of the electrons on the target anode. Providing a substantially uniform thermal load on the target anode and preventing thermal distortion of the emitter lead to higher x-ray flux and better focusing for higher quality x-ray images.
Abstract:
An X-ray tube includes: a Wehnelt electrode having a dent inside; a filament arranged in the dent of the Wehnelt electrode and configured to emit an electron beam when electricity is passed therethrough; an anode configured to emit an X-ray in response to the incident electron beam; an electrode part configured by at least one pair of electrode members, the electrode members facing each other across a path of the electron beam, a voltage being applied to each of the electrode members; a voltage controller configured to control the voltage applied to the electrode part; and a shield member arranged in contact with the Wehnelt electrode and configured to cover part of the dent by a projecting part.
Abstract:
An apparatus and method for determining the density and other properties of a formation surrounding a borehole using a high voltage x-ray generator. One embodiment comprises a stable compact x-ray generator capable of providing radiation with energy of 250 keV and higher while operating at temperatures equal to or greater than 125° C. In another embodiment, radiation is passed from an x-ray generator into the formation; reflected radiation is detected by a short spaced radiation detector and a long spaced radiation detector. The output of these detectors is then used to determine the density of the formation. In one embodiment, a reference radiation detector monitors a filtered radiation signal. The output of this detector is used to control at least one of the acceleration voltage and beam current of the x-ray generator.
Abstract:
According to the X-ray generating apparatus of this invention, a potential corresponding to that of a housing is applied to a first electrode, closest to a cathode, of at least two intermediate electrodes arranged between the cathode and a target. Therefore, even if the first electrode with an increased thermal capacity contacts the housing, the function of the X-ray generating apparatus will never be impaired. As a result, the first electrode is not easily restricted by structure, so that the first electrode may be enlarged as a measure for heat radiation, or that the first electrode may be placed in contact with the housing. The first electrode contacting the housing determines a positional relationship of the electron gun and housing to facilitate assembly of the X-ray generating apparatus. Further, all the potentials of the cathode, intermediate electrodes (e.g. a second electrode and a third electrode) and target will have straight polarity with respect to the potential of the first electrode, which facilitates power source control.
Abstract:
One or more components of an x-ray cathode assembly are manufactured using a metal deposition process. The deposition process is carried out by providing a cathode shield and a cathode head with a cathode cup and a filament slot fabricated from a first metal, and forming a coating comprising a second metal on at least a portion of at least one of the filament slot, cathode cup, cathode head, and/or cathode shield using a deposition process so as to yield the x-ray cathode assembly. The deposition process is continued until a desired thickness of metal is achieved. Example deposition processes include electroforming, chemical vapor deposition, physical vapor deposition, plasma spray, high velocity oxygen fuel thermal spray, and detonation thermal spraying.
Abstract:
An apparatus and method for determining the density and other properties of a formation surrounding a borehole using a high voltage x-ray generator. One embodiment comprises a stable compact x-ray generator capable of providing radiation with energy of 250 keV and higher while operating at temperatures equal to or greater than 125° C. In another embodiment, radiation is passed from an x-ray generator into the formation; reflected radiation is detected by a short spaced radiation detector and a long spaced radiation detector. The output of these detectors is then used to determine the density of the formation. In one embodiment, a reference radiation detector monitors a filtered radiation signal. The output of this detector is used to control at least one of the acceleration voltage and beam current of the x-ray generator.