Abstract:
The present disclosure can relate to a thermionic emission device. The thermionic emission device can include a substrate layer, an insulating layer deposited onto an uppermost surface of the substrate layer, and an electron emitting layer deposited onto an uppermost surface of the insulating layer. The electron emitting layer, the insulating layer, and the substrate layer each can include a first etching and a second etching oriented according to a photoresist pattern applied to an uppermost surface of the electron emitting layer. The first etching and the second etching can converge to form a cavity in the substrate layer beneath a beam suspended above the cavity. The beam can comprise an unetched region of the electron emitting layer and the insulating layer oriented between the first etching and the second etching.
Abstract:
A monolithic graphite heater for heating a thermionic electron cathode includes first and second electrically conductive arms, each one of the first and second electrically conductive arms having an electrode mount at a proximal end, a thermal apex at a distal end, and a transitional region between the electrode mount and the thermal apex; a cathode mount electrically and mechanically coupling each thermal apex to form a maximum Joule-heating region at or adjacent the cathode mount and decreasing Joule heating along each transitional region; and a press-fit aperture formed in the cathode mount, the press-fit aperture sized to receive at least a portion of the thermionic electron cathode for facilitating thermionic emission produced therefrom in response to operative heat power generation provided by the maximum Joule-heating region.
Abstract:
A monolithic graphite heater for heating a thermionic electron cathode includes first and second electrically conductive arms, each one of the first and second electrically conductive arms having an electrode mount at a proximal end, a thermal apex at a distal end, and a transitional region between the electrode mount and the thermal apex; a cathode mount electrically and mechanically coupling each thermal apex to form a maximum Joule-heating region at or adjacent the cathode mount and decreasing Joule heating along each transitional region; and a press-fit aperture formed in the cathode mount, the press-fit aperture sized to receive at least a portion of the thermionic electron cathode for facilitating thermionic emission produced therefrom in response to operative heat power generation provided by the maximum Joule-heating region.
Abstract:
Examples disclosed herein involve a first connector that facilitates access to a system, a second connector that facilitates access to the same system, and an adapter controller to facilitate concatenating functionality of the first connector and the second connector when the apparatus is communicatively coupled to the system via the first connector and the second connector; and establish a high speed connection between the system and the apparatus via the first connector and the second connector.
Abstract:
A cathode element for a microfocus x-ray tube includes a heatable filament formed of a wire for thermionic emission of electrons for generating an electron beam. The filament, in a source area of the electron beam, has an elongate extension in two directions perpendicular to the electron beam.
Abstract:
A flat emitter comprises four current-supply heating legs. Half lighting for a small focus in which a current is supplied to heat only a region narrower and full lighting for a large focus in which a current is supplied to heat the entire region are selectable according to the combination of the legs. Either one of a set of the two full-lighting current-supply heating legs for the full lighting and a set of the two half-lighting current-supply heating legs for the half lighting is linearly formed, and the other is formed to be bent plural times in zigzag to set the space between the full-lighting current-supply heating leg and the half-lighting current-supply heating leg, which are adjacent to each other, at their terminals to be larger than the space at their base parts.
Abstract:
An electron beam emitter comprises an electron emission source capable of emitting electrons; a vacuum chamber containing the electron emission source; and a transmission window that keeps airtightness of the vacuum chamber and is capable of transmitting the electrons from the electron emission source. The transmission window includes a foil that transmits the electrons and a grid that does not transmit the electrons. The electron emission source includes an emission portion that emits the electrons and a non-emission portion that does not emit the electrons. The emission portion has a lower work function than the non-emission portion. The non-emission portion is prepared so as to prevent the electrons from reaching the grid.
Abstract:
Embodiments of the disclosure relate to electron emitters for use in conjunction with X-ray devices. In one embodiment, the emitter features a round emission area capable of emitting electrons when heated, wherein the round emission area comprises at least one of a gap, a channel, or a combination thereof that separates a first portion of the round emission area from a second portion of the round emission area and permits thermal expansion of the first portion and the second portion within the at least one gap or channel without permitting the first portion and the second portion to touch one another. The two electrically conductive legs coupled to the surface at respective locations outside the round emission area and that are capable of supplying current to the round emission area.
Abstract:
This X-ray tube device includes an anode and a cathode including an emitter emitting an electron to the anode. The emitter includes an electron emission portion in a flat plate shape, a pair of terminal portions extending from the electron emission portion, connected to an electrode, and a supporting portion provided separately from the terminal portions, insulated from the electrode, supporting the electron emission portion.
Abstract:
An electron source for an X-ray scanner includes an emitter support block, an electron-emitting region formed on the support block and arranged to emit electrons, an electrical connector arranged to connect a source of electric current to the electron-emitting region, and heating structure arranged to heat the support block.