Abstract:
Separation and analysis of measured Total Jitter (TJ) begins with a suitably long arbitrary digital test pattern, from which an Acquisition Record is made. A Time Interval Error (TIE) or Voltage Level Error (VLE) Record is made of the Acquisition Record. A Template defines a collection of associated bit value or transitions that are nearby or otherwise related to a bit location of interest, and has associated therewith a collection of Descriptors and their respective Metrics. Each Descriptor identifies one of the various different patterns of bit value or transitions that fit the Template. The TIE/VLE Record is examined, and a parameter is measured for each instance of each Descriptor for the Template. The collection of measured parameters for each particular Descriptor are combined (e.g., averaging) to produce the Metric for that Descriptor. A Look-Up Table (LUT) addressed by the different possible Descriptors is loaded with the associated discovered Metric, which is a plausible value for Data Dependent Jitter (DDJ) at that bit. DDJ separates from TJ because DDJ is correlated with the Descriptors, while Periodic Jitter (PJ) and Random Jitter (RJ) can be expected to average to near zero over a sufficient number of instances of a given Descriptor. Identified instances of DDJ are individually removed from corresponding locations of TJ found for the entire waveform (the original TIE/VLE Record) to leave an Adjusted TIE/VLE Record that is PJ convolved with RJ.
Abstract:
A transmission parameter control apparatus that improves transmission quality of real-time media in a transmission route that includes a wireless section in at least a part of the transmission route. The transmission parameter control apparatus is connected to a terminal via a network and is connected to a mobile terminal via a wireless link. The apparatus includes: an obtaining part for obtaining a quality parameter indicating transmission quality corresponding to the wireless link from signals of downlink and uplink transmission routes; and an adjustment part for adjusting a value of a transmission parameter determining a transmission scheme in the wireless link according to the quality parameter.
Abstract:
A method, system and computer program product for calculating a scaled quality indicator expressing a quality of experience for streaming media, includes calculating network characteristics of packet loss rate of the streaming media, calculating network characteristics of packet jitter of the streaming media, and calculating the scaled quality indicator based on the calculated packet loss rate and the calculated packet jitter.
Abstract:
An on-chip jitter measurement circuit and corresponding method are provided for receiving a reference clock and a signal of interest, including a latch for comparing the arrival time of the signal of interest to the reference clock, a delay chain in signal communication with the reference clock for varying the arrival time of the reference clock, the delay chain having a first stage, a middle stage, and a last stage, a voltage controller in signal communication with the middle stage of the delay chain for controlling the delay of the arrival time of the reference clock while permitting the first and last stages of the delay chain to retain a full voltage swing independent of the delay.
Abstract:
An integrated software tool for system noise management is described. A system noise management suite for an assembly includes an integrated circuit design to be coupled to a circuit board design. The system includes three modules and a user interface. The first module is configured to determine at least one type of bounce voltage for the assembly. The second module is configured to identify decoupling capacitances for the assembly to reduce power distribution system noise. The third module is configured to estimate jitter caused by the integrated circuit design. The user interface is coupled to the first module, the second module, and the third module for input of information for the first module, the second module, and the third module.
Abstract:
A method a low cost and production-integrable technique for providing a signal diagram. The data signal is edge-detected and asynchronously sampled (or alternatively a clock signal is latched). The data signal or a second signal is compared to a settable threshold voltage and sampled. The edge and comparison data are folded according to a swept timebase to find a minimum jitter period. The crossing of the signal diagram edges is determined from a peak of a histogram of the folded edge data. A histogram of ratios of the sample values versus displacement from the position of the crossing location is generated for each threshold voltage. The technique is repeated over a range of settable threshold voltages. Then, the ratio counts are differentiated across the histograms with respect to threshold voltage, from which a signal diagram is populated.
Abstract:
A packet is transmitted such that jitter of a packet transmission time period is suppressed. A transmission apparatus includes a stream data obtaining unit obtaining stream data from a source outside of the transmission apparatus, a coding unit compressing and coding the stream data, a packet generation unit generating a packet, a transmission buffer unit temporarily storing data, a transmission method selection unit selecting any one of “jitter suppressed transmission” and “normal transmission” as a transmission mode, a communication I/F unit transmitting the packetized stream data with a transmission method selected by the transmission method selection unit, a communication medium detection unit obtaining data for controlling communication via the communication I/F unit by identifying a communication medium, a time keeping unit generating time information, an input unit accepting manipulation input, and a storage unit storing data in a non-volatile manner.
Abstract:
Timing jitter sequences Δφj[n] and Δφk[n] of respective clock signals under measurement xj(t) and xk(t) are estimated, and a timing difference sequence between those timing jitter sequences is calculated. In addition, initial phase angles φ0j and φ0k of linear instantaneous phases of the xj(t) and xk(t) are estimated, respectively. A sum of a difference between those initial angles and the timing difference sequence is calculated to obtain a clock skew sequence between the xj(t) and xk(t).
Abstract:
An apparatus and method for measuring jitter using phase and amplitude undersampling. A sampling circuit samples an input signal to obtain amplitude and phase information, a computation circuit determines Time Interval Error (TIE) information from the amplitude and phase information, and a signal processor processes the TIE information to generate a jitter spectrum.
Abstract:
A high-speed bit stream interface module interfaces a high-speed communication media to a communication Application Specific Integrated Circuit (ASIC) via a Printed Circuit Board (PCB). The high-speed bit stream interface includes a line side interface, a board side interface, and a signal conditioning circuit. The signal conditioning circuit services each of an RX path and a TX path and includes a limiting amplifier and a clock and data recovery circuit. The signal conditioning circuit may also include an equalizer and/or an output pre-emphasis circuit. The clock and data recovery circuit has an adjustable Phase Locked Loop (PLL) bandwidth that is set to correspond to a jitter bandwidth of a serviced high-speed bit stream.