Abstract:
A method of forming a stacking structure by forming an electroconductive layer precursor pattern by an electroconductive paste made of a resin component, electroconductive fine particles, and glass fine particles, forming a dielectric layer precursor pattern by a dielectric paste made of a resin component and glass fine particles, and simultaneously baking both of those patterns, wherein they are held for a predetermined time while keeping a baking temperature which is equal to or higher than a decomposing temperature of the resin component and is equal to or lower than a baking start temperature of the glass fine particles and, thereafter, their baking is completed at the baking temperature which is equal to or higher than the baking start temperature of the glass fine particles and is lower than its softening point. Thus, the occurrence of a void and a pin hole in an insulative layer can be prevented in the stacking structure after the baking.
Abstract:
A highly reliable ceramics substrate which can sufficiently secure a bonding strength of a surface conductor in an initial state and after a lapse of time (e.g., after a PCT) is provided. The multilayer ceramics substrate has a surface conductor on at least one surface of a multilayer body constituted by a plurality of laminated ceramics substrate layers. A reaction phase formed by a reaction between a ceramics component in the ceramics substrate layers and a glass component in the surface conductor is deposited at an interface between the surface conductor and ceramics substrate layers. For example, an alumina filler in the ceramics substrate layers and Zn in the surface conductor react with each other, thereby forming ZnAl2O4 as the reaction phase.
Abstract translation:提供了一种高度可靠的陶瓷基板,其能够充分确保初始状态下和经过时间(例如,PCT之后)的表面导体的结合强度。 多层陶瓷基板在由多层叠陶瓷基板层构成的多层体的至少一个面上具有表面导体。 通过陶瓷基板层中的陶瓷部件与表面导体中的玻璃成分之间的反应形成的反应相沉积在表面导体与陶瓷基板层之间的界面处。 例如,陶瓷基体层中的氧化铝填料和表面导体中的Zn彼此反应,从而形成作为反应相的ZnAl 2 O 4 O 4。
Abstract:
The present invention provides novel methods of forming component carriers, component modules, and the carriers and modules formed therefrom which utilize thick film technology. In some embodiments, these methods are used to form lighting device chip carriers and modules. In further embodiments, these lighting device chip carriers and modules are used in LED applications.
Abstract:
A method including forming a ceramic material directly on a sheet of a first conductive material; forming a second conductive material on the ceramic material; and sintering the ceramic material. A method including forming a ceramic material directly on a sheet of a first conductive material; forming a second conductive material on the ceramic material so that the ceramic material is disposed between the first conductive material and the second conductive material; thermal processing at a temperature sufficient to sinter the ceramic material and form a film of the second conductive material; and coating an exposed surface of at least one of the first conduct material and the second conductive material with a different conductive material. An apparatus including first and second electrodes; and a ceramic material between the first electrode and the second electrode, wherein the ceramic material is sintered directly on one of the first and second electrode.
Abstract:
A ceramic substrate for mounting a light emitting element. The ceramic substrate has a placement surface for placing a light emitting element having an electrode; and an electrode electrically-connected with the electrode of the light emitting element, wherein the ceramic substrate comprises a substrate body consisting of a nitride ceramics; and a coat layer coating at least a part of a surface of the substrate body and consisting of a ceramics different from the nitride ceramics forming the substrate body; and the coat layer has an optical reflectance of 50% or more for any light having a wavelength of from 300 to 800 nm, which can increase a luminance of the light emitting element by reflecting the light emitted from the element efficiently with certainty, and which has a high heat radiation property; and a manufacturing method therefor.
Abstract:
A power management module, provides an inductor including one or more electrical conductors disposed around a ferromagnetic ceramic element including one or more metal oxides having fluctuations in metal-oxide compositional uniformity less than or equal to 1.50 mol % throughout the ceramic element.
Abstract:
A method (50) of forming a solder mask on a portion of a module (40) using for example LTCC technology includes the steps of forming (52) a multilayered ceramic substrate (20) with exposed metallization forming solder pads (28 or 31), masking (54 or 56) the solder pads by placing an additional ceramic layer (22 or 32) on the substrate that at least covers at least a portion of periphery of the solder pad using the LTCC process. The method can further include applying (58 or 60) solder (36) to a portion of the solder pad not covered by the solder mask (22) and placing a printed circuit board (34) having a different coefficient of thermal expansion than the multilayer ceramic substrate on the multilayer ceramic substrate to form the module before reflowing. The module can then be reflowed to form the module without cracks.
Abstract:
Disclosed is a semiconductor package and method for package a semiconductor that has high reliability. A semiconductor package according to the present invention comprises a first substrate on which a circuit pattern and an electrode pad are formed; a second substrate which is adhered to the first substrate and on which a hole is formed; and a solder ball adhered to the electrode pad through the hole formed on the second substrate. Then, the second substrate is used as a solder resist. Accordingly, since the first substrate and the second substrate are formed of same material, the BGA package can be prevented from being cracked and being nonuniform when fired
Abstract:
A ceramic multi-layer wiring substrate includes a line-shaped insulation pattern arranged to extend over a plurality of surface wiring patterns and to intersect the respective surface wiring patterns, in which soldering land electrodes are defined by the insulation patterns.