Abstract:
There is provided a wiring board. The wiring board includes: a first insulating layer; a secondary battery on one surface of the first insulating layer; a second insulating layer formed on the secondary battery; a third insulating layer covering the second insulating layer; a first wiring layer on one surface of the third insulating layer; and a via electrically connecting the first wiring layer to an electrode of the secondary battery. A rigidity of the second insulating layer is lower than those of the first and third insulating layers.
Abstract:
A circuit board includes a substrate, a circuit pattern and a through electrode. The circuit pattern is disposed on one side of the substrate in a thickness direction thereof. The through electrode is filled in a through-hole formed in the substrate with one end connected to the circuit pattern. The circuit pattern and the through electrode each have an area containing a noble metal component (e.g., Au component) and are connected to each other therethrough.
Abstract:
A conductive circuit is formed by printing a pattern using a conductive ink composition and heat curing the pattern. A thixotropic agent, typically carbon black is added to the solvent-free ink composition comprising an addition type silicone resin precursor, a curing catalyst, and conductive particles. The ink composition has such thixotropy that the printed pattern may retain its shape after curing.
Abstract:
A composite metallic particle made by coating a surface of a base material sheet with a composite metallic thin film layer that contains at least one of a resin layer and a wax layer and at least one of a metal layer and a metal compound layer and step 2 for removing the composite metallic thin film layer from the sheet. The resultant composite metallic particles and conductive ink can be used in a conductive substrate producing apparatus, formed into a pattern on the conductive substrate by screen printing, an ink jet method, or some other liquid-based process.
Abstract:
In an anisotropic conductive adhesive containing a conductive particle, the conductive particle includes a resin particle that is provided with a cavity formed therein and a conductive layer surrounding a surface of the resin particle. The cavity is formed by mixing the resin particle with a reactant and partially removing the reactant from the resin particle. Thus, the conductive particle may readily absorb an external pressure, thereby providing an improved malleability to the conductive particle.
Abstract:
The invention relates to a nucleic acid comprising the following contiguous elements arranged in the 5 prime to 3 prime direction; a promoter; a selectable marker; a cloning site for receipt of a nucleic acid segment, said segment comprising a candidate miRNA target sequence; and a poly adenylation signal, said elements arranged such that a transcript directed by said promoter comprises said selectable marker, said candidate miRNA target sequence, and said poly adenylation signal in that order. Suitably the miRNA test sequence is or is derived from a 3′UTR. The invention also relates to methods for making and screening libraries.
Abstract:
The present invention provides a conductive fine particle capable of suppressing a blackening phenomenon during storage and thus providing high connection reliability; an anisotropic conductive material containing the conductive fine particle; and a connection structure.The conductive particle which has a base fine particle, and a conductive layer and a low-melting point metal layer that are formed in the stated order on the surface of the base fine particle, wherein the low-melting point metal layer has an arithmetic mean surface roughness of 50 nm or lower.
Abstract:
In the soldering method, metal-powder-contained flux is disposed between bumps and circuit electrodes when electronic parts are mounted by soldering, the metal powder comprising a core metal formed of metal such as tin and zinc and a surface metal covering surfaces of the core metal formed of noble metal such as gold and silver. Accordingly, metal powder will not remain as residue that is liable to cause migration after the reflow process, and it is possible to assure both soldering effect and insulation effect.
Abstract:
A solder composition for forming a solder joint. The composition includes a powder material including a solid metal matrix material and a filler material. The solid metal matrix material includes one or more of tin-silver-copper (Sn—Ag—Cu), tin-copper (Sn—Cu), tin-copper-nickel (Sn—Cu—Ni), tin-silver (Sn—Ag), tin-silver-bismuth (Sn—Ag—Bi), tin-bismuth-indium (Sn—Bi—In), tin-gold (Au—Sn), tin-zinc (Sn—Zn), tin-zinc-bismuth (Sn—Zn—Bi), tin-bismuth-silver (Sn—Bi—Ag), tin (Sn), tin-indium (Sn—In), indium (In), indium-silver (In—Ag), and tin-lead (Sn—Pb). The filler material includes one or more of copper (Cu), gold (Au), nickel (Ni), nickel-gold (Ni—Au), carbon, silver (Ag), aluminum (Al), molybdenum (Mo), nickel (Ni) or nickel-gold (Ni—Au) coated carbon, the platinum group metals (PGM's), and their alloys.
Abstract:
An object of the present invention is to provide a polymer particulate material with a low compression modulus and a high recovery rate from compression deformation.The present invention provides a polymer particulate material obtainable by co-polymerizing comonomer components including a polyfunctional (meth)acrylate having a structure represented by the below formulas (1), (2) or (3), and a monofunctional (meth)acrylate monomer having a structure represented by the below formula (4), the polymer particulate material shows a recovery rate from compressive deformation of 70% or higher: In the formula (1), n represents an integer within the range of 4 to 10. In the formula (2), R11 represents a hydrogen atom or a C1-4 alkyl group, R12, R13 and R14 each represent a C1-4 alkylene group, and R15, R16 and R17 each represent a hydrogen atom or a methyl group. In the formula (3), R3, R4, R5 and R6 each represent a C1-4 alkylene group, and R7, R8, R9 and R10 each represent a hydrogen atom or a methyl group. In the formula (4), R1 represents a hydrogen atom or a methyl group, and R2 represents a C5-18 alkyl group.