Abstract:
A method of producing electrically conductive anisotropic heat sealing connector members comprising, a process A of preparing an electrically conductive anisotropic suspension liquid type paint, applying the conductive paint on a surface of a flexible electrically insulative substrate film to form an electrically conductive circuit of longitudinal thin stripes pattern, and drying the applied conductive paint on the substrate film; a process B of preparing an electrically insulative heat-bonding suspension liquid type paint, applying the insulative paint wholly on the surface of the substrate film including both the longitudinal thin stripes pattern formed by the process A and the remaining portion of the substrate film, and drying the applied insulative paint on the substrate film to form a press heat bonding layer; and a process C of severing the applied and dried substrate film prepared by the processes A and B to desired length and width sizes to produce electrically conductive anisotropic heat sealing connector members.
Abstract:
An electrically conductive epoxy-based adhesive. The epoxy is selected from the amine curing modified epoxy family consisting of a resin that is a combination of polygylcidylaminophenyl resin and polygylcidylether of phenylformaldehyde novalac resin family and a catalyst that is a combination of one member from the aliphatic amide family plus one member from the aliphatic polyamine family. In one embodiment includes 17 parts by weight of the resin and 10 parts by weight of the catalyst. 73 parts by weight of a mixture of properly shaped silver flake particles are added. The resulting adhesive is curable at room temperature to provide a high-temperature, high-strength, electrically conductive adhesive.
Abstract:
A panel board on which a liquid crystal display device and a printed-circuit board on which an electric circuit for driving the liquid crystal display device are electrically and mechanically connected to each other by an electrically conductive heat-sealing connector. When joining the panel board and the printed-circuit board, the heat-sealing connector is heated by a heating head applied against the panel board or infrared radiation applied through the panel board.
Abstract:
An interconnecting means is comprised of one or more conductive ink conductors screen printed onto a first substrate, the conductive ink being comprised of an insulating polymer medium having first and second groups of conductive particles therein, and an insulating layer of flowable adhesive in covering relationship to the conductors. The first group of particles are finely divided particles which are suspended in the medium and form a continuous conductive path along the length of the conductor. The second group of particles are agglomerates of large particles which are randomly scattered throughout the conductive path and project above the surface of the medium. Interconnection is effected by positioning the first substrate conductors in an overlapping conducting relationship to the conductors on the second substrate such that the flowable adhesive is deposited between the two substrates and applying pressure to the positioned conductors and surrounding areas. The adhesive flows from the positioned areas, exposes the protruding agglomerates, thus bringing the agglomerates into contact and electrical interconnection with the second substrate conductors accompanied by the adhesion of the remaining first substrate surface to the surface of the second substrate.
Abstract:
A conductive paste contains at least a conductive powder, glass frit, and an organic vehicle. The conductive powder contains a noble metal powder such as an Ag powder and a base metal powder containing Cu and/or Ni, and the base metal powder has a specific surface area of less than 0.5 m2/g. The content of the base metal powder with respect to the total amount of the conductive powder is, in ratio by weight, 0.1 to 0.3 when the base metal powder contains Cu as its main constituent, 0.1 to 0.2 when the base metal powder contains Ni as its main constituent, and 0.1 to 0.25 when the base metal powder contains a mixed powder of Cu and Ni as its main constituent.
Abstract:
A solder paste including a metal component consisting of a first metal powder and a second metal powder having a melting point higher than that of the first metal, and a flux component. The first metal is Sn or an alloy containing Sn, the second metal is one of (1) a Cu—Mn alloy in which a ratio of Mn to the second metal is 5 to 30% by weight and (2) a Cu—Ni alloy in which a ratio of Ni to the second metal is 5 to 20% by weight, and a ratio of the second metal to the metal component is 36.9% by volume or greater.
Abstract:
In a method of manufacturing a multilayer board, including: a drilling step for forming a via hole through a pre-preg by laser beam machining, a step of filling the via hole with conductive paste containing a resin component and metal powder, and a step of arranging copper layers or copper layer portions of patterned boards on and under the filled conductive paste and pressing the same, a multilayer printed wiring board superior in conductivity and long-term stability is obtained by using alloying paste as the conductive paste in which at least part of the metal powder is melted and the metal powders adjacent to each other are alloyed, using a pre-preg having a ratio A/B of at least 10 before subjected to preheating, where A is a storage modulus at an inflection point where the storage modulus changes from increasing to decreasing and B is a storage modulus at an inflection point where the storage modulus changes from decreasing to increasing in a temperature profile rising from 60° C. to 200° C., and preheating the pre-preg before the drilling step to reduce the ratio A/B to below 10.
Abstract:
A sheet-shaped stretchable structure used as an electronics element has a stretch of not less than 10% and includes a plurality of laminated stretchable resin sheet, and at least one hollow is provided between at least one of pairs of two adjacent ones of the laminated stretchable resin sheets.
Abstract:
There are provided are an adhesive composition that keeps storage stability and further gives a cured product wherein metallic bonds are formed in the state that the cured product wets its components and is satisfactorily spread between the components (or parts), thereby turning excellent in adhesive property, electroconductivity, and reliability for mounting such as TCT resistance or high-temperature standing resistance; an electronic-component-mounted substrate using the same; and a semiconductor device. The adhesive composition comprises electroconductive particles (A) and a binder component (B), wherein the electroconductive particles (A) include a metal (a1) having a melting point equal to or higher than the reflow temperature and containing no lead, and a metal (a2) having a melting point lower than the reflow temperature and containing no lead, and the binder component (B) includes a thermosetting resin composition (b1) and an aliphatic dihydroxycarboxylic acid (b2).
Abstract:
A method of operating an imprinted electronic sensor to sense an environmental factor includes providing spatially separated micro-channels in a cured layer on a substrate. A multi-layer micro-wire is formed in each micro-channel. Each multi-layer micro-wire includes at least a conductive layer and a reactive layer exposed to the environmental factor. The conductive layer is a cured electrical conductor located only within the micro-channel and at least a portion of the reactive layer responds to the environmental factor. A controller is provided for electrically controlling first and second groups of multi-layer micro-wires, each first and second group including one or more multi-layer micro-wires. The reactive layer is exposed to the environment. The controller measures the electrical response of the first and second groups of multi-layer micro-wires. The electrical response includes at least one of the amperometric response, the resistance, the capacitance, the impedance, the complex impedance, or the inductance.