Abstract:
A flexible film and a display device including the same are disclosed. The flexible film includes an insulating film including at least one hole. The insulating film further includes a first surface corresponding to an inner circumferential surface of the hole, a second surface corresponding to an upper surface of the insulating film, and a third surface corresponding to a lower surface of the insulating film. The flexible film includes a first metal layer and a second metal layer that is positioned on the first surface and at least one of the second and third surfaces. A thickness of the first metal layer is smaller than a thickness of the second metal layer.
Abstract:
An electrode structure includes at least a contact button portion that has a portion of multilayer structure of two or more conductor layers stacked and enlarged in area. A part mounting structure includes a substrate, a contact button portion which is formed on the substrate and on which a part is mounted by connection via a bump, wherein at least the contact button portion has a portion of multilayer structure of two or more conductor layers stacked, a part of which is enlarged in area. A liquid crystal display unit is equipped with the part mounting structure.
Abstract:
A method of manufacturing a multilayer printed circuit board including preparing a substrate board having a conductor circuit formed over the substrate board, forming an interlayer resin insulating layer on the conductor circuit formed over the substrate board by press laminating on the conductor circuit a film comprising a cycloolefin resin under vacuum or reduced pressure, and forming a via hole connecting to the conductor circuit through the resin insulating layer, the forming of the via hole including plating the via hole to fill up.
Abstract:
A multilayer printed circuit board including a substrate board and a built-up structure formed over the substrate board. The built-up structure includes conductor circuits and resin insulating layers. The built-up structure has via holes interconnecting the conductor circuits through one or more resin insulating layers. The via holes are filled up with plating, and the resin insulating layers is formed of a cycloolefin resin.
Abstract:
A process for producing a printed wiring board comprises the steps of depositing a base metal on at least one surface of an insulating film to form a base metal layer and further depositing copper or a copper alloy to form a conductive metal layer, then removing a surface metal layer, which is formed through the above step, by etching to form a wiring pattern, and then treating the base metal layer with a treating liquid capable of dissolving and/or passivating the metal that forms the base metal layer. The printed wiring board so provided comprises an insulating film and a wiring pattern formed on at least one surface of the insulating film, the wiring pattern including a base metal layer deposited on the insulating film surface and a conductive metal layer, the base metal layer for forming the wiring pattern protrudes in a widthwise direction more than the conductive metal layer for forming the wiring pattern.
Abstract:
A wired circuit board comprises a metal supporting board, a metal foil formed on the metal supporting board, a first protecting layer formed on the surface of the metal foil, the first protecting layer is made of tin or a tin alloy, a first insulating layer formed on the metal supporting board to cover the first protecting layer, a conductive pattern formed on the insulating layer, and a second protecting layer formed on the surface of the conductive pattern, the second protecting layer is made of tin or a tin alloy.
Abstract:
A printed circuit board includes a flexible insulated substrate with a first surface and a second surface at both sides respectively, a wiring layer on the first surface, a reinforcement plate on a part of the second surface and an auxiliary layer between the second surface and the reinforcement plate. A reinforcement edge side of the reinforcement plate is located at the outside of an auxiliary edge side of the auxiliary layer.
Abstract:
A wired circuit forming board that can provide improved adhesion between an insulating layer and a conductive pattern and can also prevent delamination in a thin metal layer, a wired circuit board for which the same wired circuit forming board is used, and a thin metal layer forming method for forming the thin metal layer. The thin metal layer 2 is formed on the insulating base layer 1 by sputtering the first metal 35 and the second metal 36 in such a condition that a first metal diffusing region 37 for the first metal 35 to be diffused and a second metal diffusing region 38 for the second metal 36 to be diffused are overlapped with each other. This can allow formation of (i) a first unevenly-distributed metal portion 4 in which the first metal 35 is unevenly distributed and which is adjacent to the insulating base layer 1, (ii) a second unevenly-distributed metal portion 5 in which the second metal 36 is unevenly distributed and which is adjacent to the conductive pattern 6, and (iii) a metal coexisting portion 3 which is interposed between the first unevenly-distributed metal portion 4 and the second unevenly-distributed metal portion 5 and in which the first metal 35 and the second metal 36 are coexistent with each other in such a relation as to be continuously present in the thin metal layer 2 without defining any boundaries therebetween.
Abstract:
Processes for electroplating recessed features on a substrate are provided. The processes are useful in applications such as creating Cu interconnects on integrated circuits.
Abstract:
An improved electrical printed circuit exhibiting a combination of enhanced solderability and outstanding adhesion with a dielectric substrate includes a stack of two different types of conductive films. The stack includes a first conductive film that is printed onto the substrate with an ink that has been specially formulated to achieve enhanced adhesion with the substrate, and a second film that is applied over the first film using an ink that has been specifically formulated to achieve enhanced solderability.