Abstract:
As a power feed route in a semiconductor chip, a power feed route which reduces antiresonance impedance in the frequency range of tens of MHz is to be realized thereby to suppress power noise in a semiconductor device. By inserting structures which raise the resistance in the medium frequency band into parts where the resistance is intrinsically high, such as power wiring in a semiconductor package and capacitor interconnecting electrode parts, the antiresonance impedance in the medium frequency band can be effectively reduced while keeping the impedance low at the low frequency.
Abstract:
The invention discloses a PCB (100, 400) with first and second main surfaces (110, 130), the PCB also having a first height, h, said two surfaces and height together defining the volume of the PCB. The PCB comprises layers (430, 434, 438) of a first supporting laminate material, layers (440, 431, 433, 435, 437, 439) of a first conducting material and layers (432, 436) of a first prepreg, said first materials and prepreg having respective dielectrical constants and dissipation factors. In the PCB, a sub-volume of the PCB defined by a sub-area (120) within the first main surface and a sub-height (h′) within said first height together comprise a sub-PCB (320) which comprises at least one layer (330, 334) of a second supporting laminate material, said second laminate material differing from the first laminate material with regard to at least one of the factors dielectrical constant and dissipation factor.
Abstract:
A method of making a circuitized substrate in which conductors are formed in such a manner that selected ones of the conductors include solder while others do not and are thus adapted for receiving a different form of connection (e.g., wire-bond) than the solder covered conductors. In one embodiment, the solder may be applied in molten form by immersing the substrate within a bath of the solder while in another the solder may be deposited using a screening procedure.
Abstract:
In one embodiment, a method including providing a semiconductor pad package having a first pad and a second pad is disclosed. A first layer comprising a first metal is deposited on the first pad using a first process. A second metal is then deposited on the first pad and the first layer using a second process. In another embodiment, the first process comprises and electroplating process, and the second process comprises a direct immersion gold (DIG) process. In a further embodiment, the first pad is a power or ground pad, and the second pad is a signal pad.
Abstract:
There is provided a semiconductor device comprising: a first plating layer formed on one surface of an interconnect pattern; a second plating layer formed within through holes in the interconnect pattern; a semiconductor chip electrically connected to the first plating layer; an anisotropic conductive material provided on the first plating layer; and a conductive material provided on the second plating layer, wherein the first plating layer has appropriate adhesion properties with the anisotropic conductive material, and the second plating layer has appropriate adhesion properties with the conductive material.
Abstract:
Provided is a wiring portion capable of suppressing diffusion from occurring in a wiring portion or between the wiring portion and a substrate. In the wiring substrate, a first high melting point metal portion 18 having a melting point higher than Au and Ag is provided between an Au wiring portion 15 and an Ag wiring portion 17. The higher the melting point of the first high melting point metal portion 18, the lower a coefficient thereof, that is, the harder diffusion occurs. In addition, the first high melting point metal portion 19 functions as a barrier material which adequately suppresses Ag from being diffused from the Ag wiring portion 17. By providing the first high melting point metal portion 18 between the Au wiring portion 15 and the Ag wiring portion 17, it is possible to more efficiently suppress Ag from diffusion, in comparison with a case where the Ag wiring portion and the Au wiring portion are in contact with each other.
Abstract:
A method of making a circuitized substrate in which two solder deposits, either of the same or different metallurgies, are formed on at least two different metal or metal alloy conductors and PTHs. In an alternative embodiment, the same solder compositions may be deposited on conductor and PTHs of different metal or metal alloy composition. In each embodiment, a single commoning layer (e.g., copper) is used, being partially removed following the first deposition. The solder is deposited using an electroplating process (electroless or electrolytic) and the commoning bar in both depositing steps. An information handling system utilizing the circuitized substrate formed in accordance with the invention is also described.
Abstract:
An integrated bus bar structure plate in which a plurality of bus bars are arranged on substantially the one plain face to form an electric power circuit, wherein after the bus bar structure plate having a whole shape in which a plurality of types of electric power circuits are formed by selecting any of the connection parts of the bus bars is separated is adhered to the control circuit board whereby, for example, a desired electric power circuit is formed among the connection parts of bus bars.
Abstract:
A first board, on which electric wires are wired, includes a first part having a first thickness and a second part continued from the first part and having a second thickness smaller than the first thickness. A second board, on which bus bars are arranged, is disposed on the second part of the first board. The second board has a third thickness which is determined such that an additional thickness of the second thickness and the third thickness is not greater than the first thickness.
Abstract:
A multilayer wiring board with a high degree of heat resistance, which is capable of low temperature fusion without the occurrence of resin flow, enables high precision, finely detailed conductive wiring, can be ideally applied to low volume high mix manufacturing configurations, and also has little impact on the environment is provided, together with a semiconductor device mounting board using such a multilayer wiring board, and a method of manufacturing such a multilayer wiring board. In the multilayer wiring board, grooves for forming a wiring circuit and via holes are formed in an insulating substrate formed from a thermoplastic resin composition comprising a polyarylketone resin with a crystalline melting peak temperature of at least 260null C. and an amorphous polyetherimide resin as the primary constituents, a metallic foil is embedded within the grooves so that the surface of the foil protrudes to the surface of the insulating substrate, and a conductive material formed by curing a conductive paste is used for filling the via holes.