Abstract:
The invention is directed to a method of bonding a hermetically sealed electronics package to an electrode or a flexible circuit and the resulting electronics package, that is suitable for implantation in living tissue, such as for a retinal or cortical electrode array to enable restoration of sight to certain non-sighted individuals. The hermetically sealed electronics package is directly bonded to the flex circuit or electrode by electroplating a biocompatible material, such as platinum or gold, effectively forming a studbump connection, which bonds the flex circuit to the electronics package. The resulting electronic device is biocompatible and is suitable for long-term implantation in living tissue.
Abstract:
An electrical connector include a movable hold down member that is configured to receive a fastener so as to secure the electrical connector to an underlying substrate to which the electrical connector is mounted.
Abstract:
Since a protruding portion preventing a rotation during screw fastening of a connection member is disposed to engage with an end surface of a printed circuit board, a configuration can be achieved such that the protruding portion does not interfere with an earth member, a bracket, etc. disposed on the back side of the printed circuit board, and the earth member and the bracket can freely be designed.
Abstract:
The invention is directed to a method of bonding a hermetically sealed electronics package to an electrode or a flexible circuit and the resulting electronics package that is suitable for implantation in living tissue, for a retinal or cortical electrode array to enable restoration of sight to certain non-sighted individuals. The hermetically sealed electronics package is directly bonded to the flex circuit or electrode by electroplating a biocompatible material, such as platinum or gold, effectively forming a plated rivet-shaped connection, which bonds the flex circuit to the electronics package. The resulting electronic device is biocompatible and is suitable for long-term implantation in living tissue.
Abstract:
Provided is an LED module with which wide light distribution may be obtained even with a small number of attached LED devices, and which has a simple structure which may be easily assembled. An LED module includes a column-shaped mounting substrate and a plurality of LED devices. The mounting substrate has a structure further including an insulation layer between a first copper plate and a second copper plate. When mounting the plurality of LED devices on a leading end part of the mounting substrate, the first copper plate is used as the plus-side electrode, and the second copper plate is used as the minus-side electrode.
Abstract:
An electronic substrate connecting structure is used to electrically connect a pair of electronic substrates arranged to face each other. The electronic substrate connecting structure includes a plurality of pins erected on one of the electronic substrates to electrically connect the one of the electronic substrates and the other electronic substrate, and a pin guide that has a plurality of guide holes where the pins are inserted and defines positions of the pins such that the pins are connectable to the other electronic substrate while the pins are installed in the one of the electronic substrates.
Abstract:
Disclosed herein is a power module package including an external connection terminal; a substrate in which a fastening unit allowing one end of the external connection terminal to be insertedly fastened thereinto is buried at a predetermined depth in a thickness direction; and a semiconductor chip mounted on one surface of the substrate.
Abstract:
An electronic substrate connecting structure is used to electrically connect a pair of electronic substrates arranged to face each other. The electronic substrate connecting structure includes a plurality of pins erected on one of the electronic substrates to electrically connect the one of the electronic substrates and the other electronic substrate, and a pin guide that has a plurality of guide holes where the pins are inserted and defines positions of the pins such that the pins are connectable to the other electronic substrate while the pins are installed in the one of the electronic substrates.
Abstract:
An electrical connector includes a body, a trace, a terminal, and an engaging element. The body includes a recessed groove. The trace includes a first contact portion and a connection segment. The first contact portion is formed on a surface of the body and connected to the connection segment. The connection segment is formed on an inner surface of the recessed groove. The terminal is supported by the body and comprises a second contact portion. The terminal is partially exposed in the recessed groove and the second contact portion extends out of the body. The engaging element is provided in the recessed groove and electrically connect the connection segment and the terminal.
Abstract:
A circuit board unit includes a printed circuit board and a terminal block mounted on the printed circuit board and connecting a power module and an electrical wire together. The terminal block includes a terminal connection part to be directly connected to the power module, and a wire connection part to be connected to the electrical wire. In the printed circuit board, a hole having an orthographic projection area larger than that of the terminal connection part as viewed in plane is formed. The terminal connection part is positioned below or above the hole of the printed circuit board.