Abstract:
A gas reactor system may be configured for facilitating chemical reactions of gases using shockwaves produced in a supersonic gaseous vortex. The system may include a gas source to provide a gas to a heater and/or a reactor. The reactor may be configured to facilitate chemical reactions of gases using shockwaves created in a supersonic gaseous vortex. The reactor may be arranged with a gas inlet to introduce a high-velocity steam of gas into a chamber of the reactor. The gas inlet may effectuate a vortex of supersonic circulating gas within the chamber. The vortex may rotate at supersonic speed about the longitudinal axis of the chamber. The system may be configured to store an output product of the reactor in a storage tank in fluid communication with the reactor.
Abstract:
An implosion reactor tube is provided, including: a receptacle body having a tube shape open at a first end; a cylinder positioned within the receptacle body; a mixing chamber at a second end of the receptacle body; the mixing chamber defined by a baffle; the baffle having a plurality of inner passages proximate to the cylinder allowing fluid passage through the baffle and a plurality of outer passages proximate to the receptacle body allowing passage of air and fuel through said baffle; a fuel and air inlet for allowing the air and fuel to enter the mixing chamber; and a flash igniter for igniting the air and fuel.
Abstract:
The present invention relates to a fluid shockwave reactor. The fluid shockwave reactor introduces laser resonance theory into the field of fluid physics. It consists of a shockwave resonance energy concentration device and at least one set of jet collision device. The shockwave resonance energy concentration device can enhance the shockwave strength produced during jet collisions; strengthen the ultrahigh pressure and cavitation effect of the shockwave field; it can also intensify physical and chemical effects on the processed materials. The fluid shockwave reactor can achieve ultrafine crushing on the fluid materials with lower energy consumption. Under certain technological conditions, the fluid shockwave reactor may also effectively catalytize the chemical reaction process on fluid materials.
Abstract:
The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 μm/h.
Abstract:
An object of the present invention is to provide a catalyst exhibiting excellent performance particularly in partial oxidation reaction. Another object is to provide a method for efficiently producing carboxylic acid or carboxylic anhydride through vapor-phase partial oxidation of an organic compound by use of an oxygen-containing gas in the presence of the catalyst. The catalyst contains (1) diamond; (2) at least one species selected from among Group 5 transition element oxides, collectively called oxide A; and (3) at least one species selected from among Group 4 transition element oxides, collectively called oxide B. The method for producing a carboxylic acid or a carboxylic anhydride includes subjecting an organic compound to vapor phase partial oxidation by use of an oxygen-containing gas in the presence of the catalyst, wherein the organic compound is an aromatic compound having one or more substituents in a molecule thereof, the substituents each including a carbon atom bonded to an aromatic ring.
Abstract:
In certain implementations, a method of manufacturing electrically conductive nanodiamond particles involves providing at least one type of carbon-containing explosive material and at least one type of non-explosive material; wherein the non-explosive material contains at least one or more than one element or species other than nitrogen that serve as a nanodiamond dopant; mixing the carbon containing explosive material with the non-explosive material; detonating the mixture under conditions of negative oxygen balance in the presence of a cooling medium; purifying the product of detonation from incombustible impurities; and carrying out additional processing for activation or enhancement of electrical conductance. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.
Abstract:
A method of production of a silicon carbide single crystal enabling fast, stable, and continuous growth of a high quality silicon carbide single crystal and enabling both an increase in size of the bulk single crystal and an improvement of quality of a thin film single crystal, comprising stacking, in order from the bottom, a silicon carbide source material rod, a solvent, a seed crystal, and a support rod supporting the seed crystal at its bottom end so as to form a columnar workpiece, heating a bottom end of the source material rod as a bottom end of the columnar workpiece, and cooling a top end of the support rod as the top end of the columnar workpiece so as to form a temperature gradient inside the columnar workpiece so that the top end face becomes lower in temperature than the bottom end face of the solvent; and causing a silicon carbide single crystal to grow continuously downwardly starting from the seed crystal, wherein said method further comprises using an inside cylindrical susceptor tightly surrounding the outer circumference of the columnar workpiece.
Abstract:
Methods and systems for extending the life of a dehydrogenation catalyst are described herein. For example, one embodiment includes providing an alkyl aromatic hydrocarbon feed stream to a reaction chamber, contacting the feed stream with a dehydrogenation catalyst to form a vinyl aromatic hydrocarbon, the dehydrogenation catalyst including iron oxide and an alkali metal catalysis promoter and supplying a catalyst life extender to at least one reaction chamber, the reaction chamber loaded with the dehydrogenation catalyst, wherein the catalyst life extender includes a potassium salt of a carboxylic acid.
Abstract:
Disclosed is a method for extending the life of dehydrogenation catalysts used to prepare vinyl aromatic hydrocarbons. The catalysts, which typically include both iron oxide and potassium containing catalysis promoter, are exposed to additional potassium delivered using a potassium carboxylate. The potassium carboxylates are desirably free of halogens and other catalysts poisons or groups that could result in the undesirable properties in vinyl aromatic hydrocarbons produced therewith. The present invention is particularly useful with the production of styrene and methyl styrene.
Abstract:
The present invention relates to a diamond-carbon material, containing carbon, hydrogen, nitrogen, oxygen and incombustible impurities of a composition specified in the disclosure, and the surface contains methyl, carboxyl, lactone, aldehyde, ether and quinone groups.The material of the present invention is produced by detonating an oxygen-deficient explosive in a closed volume in a medium inert towards carbon, at a cooling rate of the detonation products of 200 to 6000 degree/min.