Abstract:
In a manually operable discharging apparatus (1) in the extension of the medium pump (2) provided for conveying the medium and in directly equiaxial manner at the outer end thereof is provided a compressed air pump (50) located in a cap-like, common handle (22), with which by means of a compressed air duct (90) separate from the medium supply for furthering atomization compressed air can be delivered to the discharge nozzle (25) or in other areas of the discharging apparatus (1), e.g. to the medium discharge duct (24), so that it is also possible to clean said duct by blowing free. The compressed air pump (50) can be constructed in such a way that it starts with the compressed air delivery prior to the medium delivery of the medium pump (2) and ends after this. In addition, appropriately there is an at least two-stage atomizing device (100) for the additional atomization of a preatomized medium flow with a nozzle air flow in the vicinity of discharge nozzle (25).
Abstract:
A nozzle assembly and method for delivering swirls of a thermoplastic melt to a substrate operate on the principle of contacting a thermoplastic spun filament with swirling air to impart a circular swirling expanding cone pattern to the filament. The swirling filament is deposited on a substrate or collector as circular beads.
Abstract:
An atomizer for use in the combustion of liquids, particularly liquids containing particulate materials, comprises a body having a duct therein for the liquid to be atomized and a plurality of flow passages therein for a supply of atomizing gas such as air or natural gas, the flow passages intersecting with the duct at such positions and at such angles that the atomizing gas has a significant proportion thereof directed along paths tangential to the duct.
Abstract:
A vortex chamber atomizer has a housing consisting of an axially extending casing and end plates which shut off the ends of the casing and of which one has an inlet nozzle therein and the other end plate has an outlet pipe therein, there furthermore being at least two tubular connectors extending through the casing so that the center lines of such connectors are at a distance from, and a right angle to the axis of the housing.In order to obtain an air-liquid mixture with ideal turbulence while avoiding prior segregation within the vortex chamber the housing contains annularly extending internal structures running at a right angle from the face of the casing in a circumferential direction. These internal structures extend into the interior of the housing in such a manner that a cavity is defined in the housing, which is adapted in form to the primary vortex produced in the vortex chamber atomizer.
Abstract:
A distinctive method and apparatus for forming a substantially continuous filament of a thermoplastic work material and for imparting a swirling motion thereto comprises a body member which has a work material supply passage and a gas supply passage formed therein. An outlet nozzle section connects to the body member and has a substantially conically tapered shape. The nozzle section has a nozzle extrusion passage formed therein in communication with the work material supply passage. A housing member operably connects to the body member to delimit a substantially annular gas transfer zone in fluid communication with the gas supply passage and to delimit a substantially annular gas outlet passage arond the nozzle section. The housing member includes an exit section having inner wall surfaces which substantially parallel the conically tapered shape of the nozzle section. The inner wall surfaces are in a selected spaced relation from the nozzle section to define the gas outlet passage. The housing exit section and the nozzle section are configured to provide for a selected gas from which imparts the filament swirling motion substantially without disintegrating the filament, the apparatus thereby constructed to deposit a substantially continuous, swirled filament of the work material onto a selected substrate.
Abstract:
A distinctive method and apparatus for depositing a pattern of material, such as hot-melt adhesive, onto a substrate comprises a supplying mechanism for forming a first and at least a second substantially continuous stream of the selected material, and a gas-directing mechanism for forming a plurality of gas streams. The gas streams have selected velocities and are arranged to entrain the material streams to impart a swirling motion to each of the material streams as it moves toward the substrate. A transport mechanism moves the substrate relative to the supply mechanism along a selected machine direction. A regulating mechanism controls the supplying mechanism and gas-directing mechanism to direct the material stream in a selected path toward the substrate and deposit the material in adjacent semi-cycloidal patterns on the substrate while closely controlling a selected cross-directional positioning of one or more of the deposited patterns.
Abstract:
A multivortex device is provided comprising a series of adjacent plates with specially designed grooves and perforations which, when mounted transversely of a uniform fluid flow in a duct, results in the formation of numerous small adjacent flow vortices either all rotating in the same direction (co-vortices) or adjacent vortices rotating in opposite direction (counter-vortices). The fluid at the peripheries of adjacent co-vortices move in opposite directions and friction converts their rotational kinetic energy into turbulence within a few vortex diameters downstream from the multivortex device. The fluid at the peripheries of adjacent counter-rotating vortices move in the same direction, such that they roll upon one another substantially without friction and persist for many vortex diameters downstream from the multivortex device. The adjacent plates of the multivortex device can be provided with additional grooves and passageways which allow a second and/or third fluid to be introduced within each vortex. The high speed rotation of the first fluid can be used to act on the second and third fluids. A turbulent co-vortex field can be used to induce rapid mixing and chemical reaction, while a countervortex field can be used to remove particulates from the flow.
Abstract:
An apparatus for spraying heated hot melt adhesive in elongated strands or fibers in a controlled, spiral pattern upon a substrate comprises a spray gun having a nozzle formed with an adhesive delivery passageway and an air delivery passageway both of which terminate at the base of the nozzle. A nozzle attachment in the form of an annular plate is mounted to the base of the nozzle by an end cap. The annular plate is formed with a throughbore which receives hot melt adhesive from the adhesive delivery passageway and ejects an adhesive bead through a nozzle tip formed on the plate. An annular groove formed in the plate facilitates the drilling of air jet bores therein at an angle relative to the throughbore and adhesive bead ejected therefrom. The air jet bores receive pressurized air from the air delivery passageway and direct the pressurized air substantially tangent to the adhesive bead to form elongated adhesive fibers and to impart a spiral motion to the elongated fibers so that they are formed in a compact spray pattern for deposition onto a substrate.
Abstract:
The airblast fuel injector capable of accommodating high fuel temperature at the injector tip without deleterious fuel vaporization problems and resultant combustion instability in a gas turbine engine includes an annular spring valve mounted on an annular shoulder of an inner injector body forming an inner air chamber with the valve having a cantilever valve head for controlling fuel flow from a fuel swirling orifice in the shoulder near the injector tip. The spring bias of the cantilever valve head is adjusted by lapping the valve head prior to fastening the spring valve to the inner injector body and before the inner injector body is assembled within an outer injector body having means forming an outer annual fuel chamber and air chamber. The method involves valving the fuel flow in the injector tip near to the fuel discharge orifice in a valve closed manner below a selected minimum fuel pressure and in a valve metering manner above the selected fuel pressure with valving located sufficiently upstream therefrom that the airblast operational characteristics of the injector are not adversely affected.
Abstract:
A method and apparatus for the combustion or gasification of highly viscousnd/or suspended fuel in a burner flame. The fuel is introduced, in a nozzle, and in the form of a continuous, thin, annular layer, into a stream of atomizing medium, with the aid of which the fuel is atomized. The fuel is guided onto the inner wall of the nozzle as a continuous film at a velocity that is low with regard to wear action. The fuel is atomized at a terminal portion of the nozzle that has a knife-edge configuration. The fuel and the atomizing medium stream that flows within the annular film discharge at a minor resonant velocity.